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Chapter 1

Geometry of Lattices and X-Ray
Diffraction

In this Chapter the general static properties of crystals, as well as possibilities to observe
crystal structures, are reviewed. We emphasize basic principles of the crystal structure
description. More detailed information can be obtained, e.g., from the books [1, 4, 5].

1.1 Periodicity: Crystal Structures

Most of solid materials possess crystalline structure that means spatial periodicity or trans-
lation symmetry. All the lattice can be obtained by repetition of a building block called
basis. We assume that there are 3 non-coplanar vectors a1, a2, and a3 that leave all the
properties of the crystal unchanged after the shift as a whole by any of those vectors. As
a result, any lattice point R′ could be obtained from another point R as

R′ = R +m1a1 +m2a2 +m3a3 (1.1)

where mi are integers. Such a lattice of building blocks is called the Bravais lattice. The
crystal structure could be understood by the combination of the propertied of the building
block (basis) and of the Bravais lattice. Note that

• There is no unique way to choose ai. We choose a1 as shortest period of the lattice,
a2 as the shortest period not parallel to a1, a3 as the shortest period not coplanar to
a1 and a2.

• Vectors ai chosen in such a way are called primitive.

• The volume cell enclosed by the primitive vectors is called the primitive unit cell.

• The volume of the primitive cell is V0

V0 = (a1[a2a3]) (1.2)

3



4 CHAPTER 1. GEOMETRY OF LATTICES ...

The natural way to describe a crystal structure is a set of point group operations which
involve operations applied around a point of the lattice. We shall see that symmetry pro-
vide important restrictions upon vibration and electron properties (in particular, spectrum
degeneracy). Usually are discussed:
Rotation, Cn: Rotation by an angle 2π/n about the specified axis. There are restrictions
for n. Indeed, if a is the lattice constant, the quantity b = a + 2a cosφ (see Fig. 1.1)
Consequently, cosφ = i/2 where i is integer.

Figure 1.1: On the determination of rotation symmetry

Inversion, I: Transformation r → −r, fixed point is selected as origin (lack of inversion
symmetry may lead to piezoelectricity);
Reflection, σ: Reflection across a plane;
Improper Rotation, Sn: Rotation Cn, followed by reflection in the plane normal to the
rotation axis.

Examples

Now we discuss few examples of the lattices.

One-Dimensional Lattices - Chains

Figure 1.2: One dimensional lattices

1D chains are shown in Fig. 1.2. We have only 1 translation vector |a1| = a, V0 = a.
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White and black circles are the atoms of different kind. a is a primitive lattice with one
atom in a primitive cell; b and c are composite lattice with two atoms in a cell.

Two-Dimensional Lattices

The are 5 basic classes of 2D lattices (see Fig. 1.3)

Figure 1.3: The five classes of 2D lattices (from the book [4]).
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Three-Dimensional Lattices

There are 14 types of lattices in 3 dimensions. Several primitive cells is shown in Fig. 1.4.
The types of lattices differ by the relations between the lengths ai and the angles αi.

Figure 1.4: Types of 3D lattices

We will concentrate on cubic lattices which are very important for many materials.

Cubic and Hexagonal Lattices. Some primitive lattices are shown in Fig. 1.5. a,
b, end c show cubic lattices. a is the simple cubic lattice (1 atom per primitive cell),
b is the body centered cubic lattice (1/8 × 8 + 1 = 2 atoms), c is face-centered lattice
(1/8× 8 + 1/2× 6 = 4 atoms). The part c of the Fig. 1.5 shows hexagonal cell.
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Figure 1.5: Primitive lattices

We shall see that discrimination between simple and complex lattices is important, say,
in analysis of lattice vibrations.

The Wigner-Seitz cell

As we have mentioned, the procedure of choose of the elementary cell is not unique and
sometimes an arbitrary cell does not reflect the symmetry of the lattice (see, e. g., Fig. 1.6,
and 1.7 where specific choices for cubic lattices are shown). There is a very convenient

Figure 1.6: Primitive vectors for bcc (left panel) and (right panel) lattices.

procedure to choose the cell which reflects the symmetry of the lattice. The procedure is
as follows:

1. Draw lines connecting a given lattice point to all neighboring points.

2. Draw bisecting lines (or planes) to the previous lines.
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Figure 1.7: More symmetric choice of lattice vectors for bcc lattice.

The procedure is outlined in Fig. 1.8. For complex lattices such a procedure should be
done for one of simple sublattices. We shall come back to this procedure later analyzing
electron band structure.

Figure 1.8: To the determination of Wigner-Seitz cell.

1.2 The Reciprocal Lattice

The crystal periodicity leads to many important consequences. Namely, all the properties,
say electrostatic potential V , are periodic

V (r) = V (r + an), an ≡ n1a1 + n2a2 + n2a3 . (1.3)
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It implies the Fourier transform. Usually the oblique co-ordinate system is introduced, the
axes being directed along ai. If we denote co-ordinates as ξs having periods as we get

V (r) =
∞∑

k1,k2,k3=−∞

Vk1,k2,k3 exp

[
2πi
∑
s

ksξs
as

]
. (1.4)

Then we can return to Cartesian co-ordinates by the transform

ξi =
∑
k

αikxk (1.5)

Finally we get

V (r) =
∑
b

Vbe
ibr . (1.6)

From the condition of periodicity (1.3) we get

V (r + an) =
∑
b

Vbe
ibreiban . (1.7)

We see that eiban should be equal to 1, that could be met at

ba1 = 2πg1, ba2 = 2πg2, ba3 = 2πg3 (1.8)

where gi are integers. It could be shown (see Problem 1.4) that

bg ≡ b = g1b1 + g2b2 + g3b3 (1.9)

where

b1 =
2π[a2a3]

V0

, b2 =
2π[a3a1]

V0

, b3 =
2π[a1a2]

V0

. (1.10)

It is easy to show that scalar products

aibk = 2πδi,k . (1.11)

Vectors bk are called the basic vectors of the reciprocal lattice. Consequently, one can con-
struct reciprocal lattice using those vectors, the elementary cell volume being (b1[b2,b3]) =
(2π)3/V0.

Reciprocal Lattices for Cubic Lattices. Simple cubic lattice (sc) has simple cubic
reciprocal lattice with the vectors’ lengths bi = 2π/ai. Now we demonstrate the general
procedure using as examples body centered (bcc) and face centered (fcc) cubic lattices.

First we write lattice vectors for bcc as

a1 =
a

2
(y + z− x) ,

a2 =
a

2
(z + x− y) ,

a1 =
a

2
(x + y − z)

(1.12)
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where unit vectors x, y, z are introduced (see Fig.1.7). The volume of the cell is V0 = a3/2.
Making use of the definition (1.10) we get

b1 =
2π

a
(y + z) ,

b2 =
2π

a
(z + x) ,

b1 =
2π

a
(x + y)

(1.13)

One can see from right panel of Fig. 1.6 that they form a face-centered cubic lattice. So
we can get the Wigner-Seitz cell for bcc reciprocal lattice (later we

shall see that this cell bounds the 1st Brillouin zone for vibration and electron spec-
trum). It is shown in Fig. 1.9 (left panel) . In a very similar way one can show that bcc
lattice is the reciprocal to the fcc one. The corresponding Wigner-Seitz cell is shown in the
right panel of Fig. 1.9.

Figure 1.9: The Wigner-Seitz cell for the bcc (left panel) and for the fcc (right panel)
lattices.

1.3 X-Ray Diffraction in Periodic Structures

The Laue Condition

Consider a plane wave described as

F(r) = F0 exp(ikr− ωt) (1.14)
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which acts upon a periodic structure. Each atom placed at the point ρ produces a scattered
spherical wave

Fsc(r) = fF(ρ)
eikr

r
= fF0

eikρei(kr−ωt)

r
(1.15)

where r = R − ρ cos(ρ,R), R being the detector’s position (see Fig. 1.10) Then, we

Figure 1.10: Geometry of scattering by a periodic atomic structure.

assume R � ρ and consequently r ≈ R; we replace r by R in the denominator of Eq.
(1.15). Unfortunately, the phase needs more exact treatment:

kρ+ kr = kρ+ kR− kρ cos(ρ,R). (1.16)

Now we can replace kρ cos(ρ,R) by k′ρ where k′ is the scattered vector in the direction of
R. Finally, the phase equal to

kR− ρ∆k, ∆k = k− k′.

Now we can sum the contributions of all the atoms

Fsc(R) =
∑
m,n,p

fm,n,p

(
F0
ei(kR−ωt)

R

)[
exp(−iρm,n,p∆k

]
(1.17)

If all the scattering factors fm,n,p are equal the only phase factors are important, and strong
diffraction takes place at

ρm,n,p∆k = 2πn (1.18)

with integer n. The condition (1.18) is just the same as the definition of the reciprocal
vectors. So, scattering is strong if the transferred momentum proportional to the reciprocal
lattice factor. Note that the Laue condition (1.18) is just the same as the famous Bragg
condition of strong light scattering by periodic gratings.



12 CHAPTER 1. GEOMETRY OF LATTICES ...

Role of Disorder

The scattering intensity is proportional to the amplitude squared. For G = ∆k where G
is the reciprocal lattice vector we get

Isc ∝ |
∑
i

eiGRi | · |
∑
i

e−iGRi | (1.19)

or
Isc ∝ |

∑
i

1 +
∑
i

∑
j 6=i

eiG(Ri−Rj)| . (1.20)

The first term is equal to the total number of sites N , while the second includes correlation.
If

G(Ri −Rj) ≡ GRij = 2πn (1.21)

the second term is N(N − 1) ≈ N2, and

Isc ∝ N2.

If the arrangement is random all the phases cancel and the second term cancels. In this
case

Isc ∝ N

and it is angular independent.
Let us discuss the role of a weak disorder where

Ri = R0
i + ∆Ri

where ∆Ri is small time-independent variation. Let us also introduce

∆Rij = ∆Ri −∆Rj.

In the vicinity of the diffraction maximum we can also write

G = G0 + ∆G.

Using (1.20) and neglecting the terms ∝ N we get

Isc(G0 + ∆G)

Isc(G0)
=

∑
i,j exp

[
i
(
G0∆Rij + ∆GR0

ij + ∆G∆Rij

)]∑
i,j exp [iG0∆Rij]

. (1.22)

So we see that there is a finite width of the scattering pattern which is called rocking curve,
the width being the characteristics of the amount of disorder.

Another source of disorder is a finite size of the sample (important for small semicon-
ductor samples). To get an impression let us consider a chain of N atoms separated by a
distance a. We get

|
N−1∑
n=0

exp(ina∆k)|2 ∝ sin2(Na∆k/2)

sin2(a∆k/2)
. (1.23)

This function has maxima at a∆k = 2mπ equal to N2 (l‘Hopital’s rule) the width being
∆k′a = 2.76/N (see Problem 1.6).
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Scattering factor fmnp

Now we come to the situation with complex lattices where there are more than 1 atoms
per basis. To discuss this case we introduce

• The co-ordinate ρmnp of the initial point of unit cell (see Fig. 1.11).

• The co-ordinate ρj for the position of jth atom in the unit cell.

Figure 1.11: Scattering from a crystal with more than one atom per basis.

Coming back to our derivation (1.17)

Fsc(R) = F0
ei(kR−ωt)

R

∑
m,n,p

∑
j

fj exp
[
−i(ρm,n,p + ρj)∆k

]
(1.24)

where fj is in general different for different atoms in the cell. Now we can extract the sum
over the cell for ∆k = G which is called the structure factor:

SG =
∑
j

fj exp
[
−iρjG

]
. (1.25)

The first sum is just the same as the result for the one-atom lattice. So, we come to the
rule

• The X-ray pattern can be obtained by the product of the result for lattice sites times
the structure factor.
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Figure 1.12: The two-atomic structure of inter-penetrating fcc lattices.

[

The Diamond and Zinc-Blend Lattices]Example: The Diamond and Zinc-Blend Lattices
To make a simple example we discuss the lattices with a two-atom basis (see Fig. 1.12)

which are important for semiconductor crystals. The co-ordinates of two basis atoms are
(000) and (a/4)(111), so we have 2 inter-penetrating fcc lattices shifted by a distance
(a/4)(111) along the body diagonal. If atoms are identical, the structure is called the
diamond structure (elementary semiconductors: Si, Ge, and C). It the atoms are different,
it is called the zinc-blend structure (GaAs, AlAs, and CdS).

For the diamond structure

ρ1 = 0

ρ2 =
a

4
(x + y + z) . (1.26)

We also have introduced the reciprocal vectors (see Problem 1.5)

b1 =
2π

a
(−x + y + z) ,

b2 =
2π

a
(−y + z + x) ,

b3 =
2π

a
(−z + x + y) ,

the general reciprocal vector being

G = n1b1 + n2b2 + n3b3.

Consequently,

SG = f

(
1 + exp

[
iπ

2
(n1 + n2 + n3)

])
.
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It is equal to

SG =

 2f , n1 + n2 + n3 = 4k ;
(1± i)f , n1 + n2 + n3 = (2k + 1) ;
0 , n1 + n2 + n3 = 2(2k + 1) .

(1.27)

So, the diamond lattice has some spots missing in comparison with the fcc lattice.

In the zinc-blend structure the atomic factors fi are different and we should come to
more understanding what do they mean. Namely, for X-rays they are due to Coulomb
charge density and are proportional to the Fourier components of local charge densities.
In this case one has instead of (1.27)

SG =

 f1 + f2 , n1 + n2 + n3 = 4k ;
(f1 ± if2) , n1 + n2 + n3 = (2k + 1) ;
f1 − f2 , n1 + n2 + n3 = 2(2k + 1) .

(1.28)

We see that one can extract a lot of information on the structure from X-ray scattering.

Experimental Methods

Her we review few most important experimental methods to study scattering. Most of
them are based on the simple geometrical Ewald construction (see Fig. 1.13) for the vectors
satisfying the Laue condition. The prescription is as follows. We draw the reciprocal lattice

Figure 1.13: The Ewald construction.

(RL) and then an incident vector k, k = 2π/λX starting at the RL point. Using the tip
as a center we draw a sphere. The scattered vector k′ is determined as in Fig. 1.13, the
intensity being proportional to SG.
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The Laue Method

Both the positions of the crystal and the detector are fixed, a broad X-ray spectrum (from
λ0 to λ1 is used). So, it is possible to find diffraction peaks according to the Ewald picture.

This method is mainly used to determine the orientation of a single crystal with a
known structure.

The Rotating Crystal Method

The crystal is placed in a holder, which can rotate with a high precision. The X-ray
source is fixed and monochromatic. At some angle the Bragg conditions are met and the
diffraction takes place. In the Ewald picture it means the rotating of reciprocal basis
vectors. As long as the X-ray wave vector is not too small one can find the intersection
with the Ewald sphere at some angles.

The Powder or Debye-Scherrer Method

This method is very useful for powders or microcrystallites. The sample is fixed and the
pattern is recorded on a film strip (see Fig. 1.14) According to the Laue condition,

Figure 1.14: The powder method.

∆k = 2k sin(φ/2) = G.

So one can determine the ratios

sin

(
φ1

2

)
: sin

(
φ2

2

)
. . . sin

(
φN
N

)
= G1 : G2 . . . GN .

Those ratios could be calculated for a given structure. So one can determine the structure
of an unknown crystal.

Double Crystal Diffraction

This is a very powerful method which uses one very high-quality crystal to produce a beam
acting upon the specimen (see Fig. 1.15).
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Figure 1.15: The double-crystal diffractometer.

When the Bragg angles for two crystals are the same, the narrow diffraction peaks are
observed. This method allows, in particular, study epitaxial layer which are grown on the
substrate.

Temperature Dependent Effects

Now we discuss the role of thermal vibration of the atoms. In fact, the position of an atom
is determined as

ρ(t) = ρ0 + u(t)

where u(t) is the time-dependent displacement due to vibrations. So, we get an extra
phase shift ∆k u(t) of the scattered wave. In the experiments, the average over vibrations
is observed (the typical vibration frequency is 1012 s−1). Since u(t) is small,

〈exp(−∆k u)〉 = 1− i 〈∆k u〉 − 1

2

〈
(∆k u)2

〉
+ . . .

The second item is equal to zero, while the third is〈
(∆k u)2

〉
=

1

3
(∆k)2

〈
u2
〉

(the factor 1/3 comes from geometric average).
Finally, with some amount of cheating 1 we get

〈exp(−∆k u)〉 ≈ exp

[
−(∆k)2 〈u2〉

6

]
.

1We have used the expression 1−x = exp(−x) which in general is not true. Nevertheless there is exact
theorem 〈exp(iϕ)〉 = exp

[
−
〈
(ϕ)2

〉
/2
]

for any Gaussian fluctuations with 〈ϕ〉 = 0.
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Again ∆k = G, and we get

Isc = I0e
−G2〈u2〉/3 (1.29)

where I0 is the intensity from the perfect lattice with points ρ0. From the pure classical
considerations,2 〈

u2
〉

=
3kBT

mω2

where ω is the lattice vibrations frequency (1013–1014 s−1). Thus,

Isc = I0 exp

[
−kBTG

2

mω2

]
. (1.30)

According to quantum mechanics, even at zero temperature there are zero-point vibrations
with3 〈

u2
〉

=
3~

2mω
.

In this case

Isc = I0R exp

[
− ~G2

2mω

]
(1.31)

where I0R is the intensity for a rigid classical lattice. For T = O, G = 109cm−1, ω =
2π · 1014 s−1, m = 10−22 g the exponential factor is 0.997.

It means that vibrations do not destroy the diffraction pattern which can be studied
even at high enough temperatures.

At the present time, many powerful diffraction methods are used, in particular, neutron
diffraction. For low-dimensional structures the method of reflection high energy electron
diffraction (RHEED) is extensively used.

1.4 Problems

1.1. Show that (a1[a2a3]) = (a3[ a1a2]) = (a2[a3a1]).
1.2. Show that only n = 1, 2, 3, 6 are available.
1.3. We have mentioned that primitive vectors are not unique. New vectors can be defined
as

a′i =
∑
k

βikak,

the sufficient condition for the matrix β̂ is

det(βik) = ±1. (1.32)

Show that this equality is sufficient.
1.4. Derive the expressions (1.10) for reciprocal lattice vectors.

2〈E〉 = mω2
〈
u2
〉
/2 = 3kBT/2.

3〈E〉 = 3~ω/4.
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1.5. Find the reciprocal lattice vectors for fcc lattice.
1.6. Find the width of the scattering peak at the half intensity due to finite size of the
chain with N
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Chapter 2

Lattice Vibrations: Phonons

In this Chapter we consider the dynamic properties of crystal lattice, namely lattice vi-
brations and their consequences. One can find detailed theory in many books, e.g. in
[1, 2].

2.1 Interactions Between Atoms in Solids

The reasons to form a crystal from free atoms are manifold, the main principle being

• Keep the charges of the same sign apart

• Keep electrons close to ions

• Keep electron kinetic energy low by quantum mechanical spreading of electrons

To analyze the interaction forces one should develop a full quantum mechanical treat-
ment of the electron motion in the atom (ion) fields, the heavy atoms being considered as
fixed. Consequently, the total energy appears dependent on the atomic configuration as on
external parameters. All the procedure looks very complicated, and we discuss only main
physical principles.

Let us start with the discussion of the nature of repulsive forces. They can be due
both to Coulomb repulsive forces between the ions with the same sign of the charge and
to repulsive forces caused by inter-penetrating of electron shells at low distances. Indeed,
that penetration leads to the increase of kinetic energy due to Pauli principle – the kinetic
energy of Fermi gas increases with its density. The quantum mechanical treatment leads
to the law V ∝ exp(−R/a) for the repulsive forces at large distances; at intermediate
distances the repulsive potential is usually expressed as

∆V (R) = A/R12. (2.1)

.
There are several reasons for atom attraction. Although usually the bonding mecha-

nisms are mixed, 4 types of bonds are specified:

21
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Ionic (or electrostatic) bonding. The physical reason is near complete transfer of the
electron from the anion to the cation. It is important for the alkali crystals NaCl, KI, CsCl,
etc. One can consider the interaction as the Coulomb one for point charges at the lattice
sites. Because the ions at the first co-ordination group have opposite sign in comparison
with the central one the resulting Coulomb interaction is an attraction.

To make very rough estimates we can express the interaction energy as

Vij =

[
λe−R/ρ − e2∗

R
for nearest neighbors,

± e2∗
Rij

otherwise
(2.2)

with Rij = Rpij where pij represent distances for the lattice sites; e∗ is the effective charge.
So the total energy is

U = L

(
zλe−R/ρ − αe

2
∗
R

)
where z is the number of nearest neighbors while

α =
′∑
i,j

±
pij

is the so-called Madelung constant. For a linear chain

α = 2

(
1− 1

2
+

1

3
− · · ·

)
== 2 ln(1 + x)|x=1 = 2 ln 2.

Typical values of α for 3D lattices are: 1.638 (zinc-blend crystals), 1.748 (NaCl).

Covalent (or homopolar) bonding. This bonding appears at small distances of the
order of atomic length 10−8 cm. The nature of this bonding is pure quantum mechanical;
it is just the same as bonding in the H2 molecule where the atoms share the two electron
with anti-parallel spins. The covalent bonding is dependent on the electron orbitals, con-
sequently they are directed. For most of semiconductor compounds the bonding is mixed –
it is partly ionic and partly covalent. The table of the ionicity numbers (effective charge)
is given below Covalent bonding depends both on atomic orbital and on the distance – it
exponentially decreases with the distance. At large distances universal attraction forces
appear - van der Waal’s ones.

Van der Waal’s (or dispersive) bonding. The physical reason is the polarization of
electron shells of the atoms and resulting dipole-dipole interaction which behaves as

∆V (R) = −B/R6. (2.3)

The two names are due i) to the fact that these forces has the same nature as the forces
in real gases which determine their difference with the ideal ones, and ii) because they are
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Crystal Ionicity
Si 0.0
SiC 0.18
Ge 0.0
ZnSe 0.63
ZnS 0.62
CdSe 0.70
InP 0.42
InAs 0.46
InSb 0.32
GaAs 0.31
GaSb 0.36

Table 2.1: Ionicity numbers for semiconductor crystals.

determined by the same parameters as light dispersion. This bonding is typical for inert
gas crystals (Ar, Xe, Cr, molecular crystals). In such crystals the interaction potential is
described by the Lennard-Jones formula

V (R) = 4ε

[( σ
R

)12

−
( σ
R

)6
]

(2.4)

the equilibrium point where dV/dR = 0 being R0 = 1.09σ.

Metallic bonding. Metals usually form closed packed fcc, bcc, or hcp structures where
electrons are shared by all the atoms. The bonding energy is determined by a balance
between the negative energy of Coulomb interaction of electrons and positive ions (this
energy is proportional to e2/a) and positive kinetic energy of electron Fermi gas (which is,
as we will see later, ∝ n2/3 ∝ 1/a2).

The most important thing for us is that, irrespective to the nature of the bonding, the
general form of the binding energy is like shown in Fig. 2.1.

2.2 Lattice Vibrations

For small displacement on an atom from its equilibrium position one can expand the
potential energy near its minimal value (see Fig. 2.1)

V (R) = V (R) +

(
dV

dR

)
R0

(R−R0) +
1

2

(
d2V

dR2

)
R0

(R−R0)2 + +

+
1

6

(
d3V

dR3

)
R0

(R−R0)3 + · · · (2.5)



24 CHAPTER 2. LATTICE VIBRATIONS: PHONONS

Figure 2.1: General form of binding energy.

If we expand the energy near the equilibrium point and denote(
d2V

dR2

)
R0

≡ C > 0,

(
d3V

dR3

)
R0

≡ −2γ > 0

we get the following expression for the restoring force for a given displacement x ≡ R−R0

F = −dV
dx

= −Cx+ γx2 (2.6)

The force under the limit F = −Cx is called quasi elastic.

One-Atomic Linear Chain

Dispersion relation

We start with the simplest case of one-atomic linear chain with nearest neighbor interaction
(see Fig. 2.2) If one expands the energy near the equilibrium point for the nth atom and

Figure 2.2: Vibrations of a linear one-atomic chain (displacements).
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use quasi elastic approximation (2.6) he comes to the Newton equation

mün + C(2un − un−1 − un+1) = 0. (2.7)

To solve this infinite set of equations let us take into account that the equation does not
change if we shift the system as a whole by the quantity a times an integer. We can fulfill
this condition automatically by searching the solution as

un = Aei(qan−ωt). (2.8)

It is just a plane wave but for the discrete co-ordinate na. Immediately we get (see Prob-
lem 2.1)

ω = ωm| sin
qa

2
|, ωm = 2

√
C

m
. (2.9)

The expression (2.9) is called the dispersion law. It differs from the dispersion relation for
an homogeneous string, ω = sq. Another important feature is that if we replace the wave
number q as

q → q′ = q +
2πg

a
,

where g is an integer, the solution (2.8) does not change (because exp(2πi× integer) = 1).
Consequently, it is impossible to discriminate between q and q′ and it is natural to choose
the region

− π

a
≤ q ≤ π

a
(2.10)

to represent the dispersion law in the whole q-space. This law is shown in Fig. 2.3.
Note that there is the maximal frequency ωm that corresponds to the minimal wave length

Figure 2.3: Vibrations of a linear one-atomic chain (spectrum).

λmin = 2π/qmax = 2a. The maximal frequency is a typical feature of discrete systems
vibrations.
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Now we should recall that any crystal is finite and the translation symmetry we have
used fails. The usual way to overcome the problem is to take into account that actual
number L of sites is large and to introduce Born-von Karmann cyclic boundary conditions

un±L = nn . (2.11)

This condition make a sort of ring of a very big radius that physically does not differ from
the long chain.1 Immediately, we get that the wave number q should be discrete. Indeed,
substituting the condition (2.11) into the solution (2.8) we get exp(±iqaL) = 1, qaL = 2πg
with an integer g. Consequently,

q =
2π

a

g

L
, −L

2
< g <

L

2
(2.12)

(it is convenient to consider L as a large even number). So, for a linear chain, the wave
number q takes L discrete values in the interval (−π/a, π/a). Note that this interval is
just the same as the Wigner-Seitz cell of the one-dimensional reciprocal lattice.

Density of States

Because of the discrete character of the vibration states one can calculate the number of
states, z, with different q in the frequency interval ω, ω + dω. One easily obtains (see
Problem 2.2)

dz

dω
=

2L

π

1√
ω2
m − ω2

. (2.13)

This function is called the density of states (DOS). It is plotted in Fig. 2.4. We shall see

Figure 2.4: Density of states for a linear one-atomic chain.

that DOS is strongly dependent on the dimensionality of the structure.

1Note that for small structures of modern electronics this assumption need revision. Violation of this
assumption leads to the specific interface modes.
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Phase and Group Velocity

Now we discuss the properties of long wave vibrations. At small q we get from Eq. (2.9)

ω = sq , (2.14)

where

s = a

√
C

m
(2.15)

is the sound velocity in a homogeneous elastic medium. In a general case, the sound velocity
becomes q-dependent, i. e. there is the dispersion of the waves. One can discriminate
between the phase (sp) and group (sg) velocities. The first is responsible for the propagation
of the equal phase planes while the last one describes the energy transfer. We have

sp =
ω

|q|
= s

∣∣∣∣sin(aq/2)

aq/2

∣∣∣∣ ,
sg =

∣∣∣∣dωdq
∣∣∣∣ = s| cos(aq/2)| . (2.16)

At the boundaries of the interval we get sp = (2/π)s while sg = 0 (boundary modes cannot
transfer energy).

Diatomic Chain. Acoustic and Optical branches.

We use this case to discuss vibrations of compound lattices. Let us consider the chain
shown in Fig. 2.5 One can see that the elementary cell contains 2 atoms. If we assume the

Figure 2.5: Linear diatomic chain.

elastic constants to be C1,2 we come to the following equations of motion:

m1ün = −C1(un − vn)− C2(un − vn−1) ,

m2v̈n = −C1(vn − un)− C2(vn − un−1) . (2.17)
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It is natural to use once more the translation symmetry condition and search the solu-
tion as

un = Aue
i(qan−ωt) , vn = Ave

i(qan−ωt) . (2.18)

After substitution to Eqs. (2.17) we get the set of equations for the constants Ai. To
formulate these equations it is convenient to express these equations in a matrix form
introducing the vector A ≡

(
Au Av

)
and the so-called dynamic matrix

D̂ =

(
C1+C2

m1
−C1+C2e−iaq

m1

−C1+C2eiaq

m2

C1+C2

m1

)
(2.19)

The equation for A has the form (see matrix notations in Appendix B)

ω2A− D̂A = 0̂ . (2.20)

This is homogeneous equation; it has a solution only if

det (ω21̂− D̂) = 0 . (2.21)

This is just the equation which determines the eigenfrequencies. We get

ω2
1,2 =

ω2
0

2

[
1∓

√
1− γ2 sin2 aq

2

]
(2.22)

where

ω2 =
(C1 + C2)(m1 +m2)

m1m2

, γ2 = 16

[
C1C2

(C1 + C2)2

] [
m1m2

(m1 +m2)2

]
.

The frequencies ω1,2 are real because |γ| ≤ 1.
We see a very important difference with the case of monoatomic chain: there are 2

branches ω1,2 for a given value of q. The branches are shown in Fig. 2.6 The lower branch

Figure 2.6: Optical and acoustic vibration branches.

is called the acoustic branch while the upper one is called the optical branch. To understand
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the physical reason for these names let us consider the limits of zero and maximal q. We
get

ωac(0) = 0 , ωac(π/a) = ω0√
2

√
1−

√
1− γ2 ,

ωopt(0) = ω0 , ωopt(π/a) = ω0√
2

√
1 +

√
1− γ2 .

(2.23)

So, we have the inequality chain

ωopt(0) = ω0 > ωopt(π/a) > ωac(π/a) > ωac(0) = 0 .

What happens in the degenerate case when C1 = C2, m1 = m2? This situation is
illustrated in Fig. 2.7 Now we can discuss the structure of vibrations in both modes. From

Figure 2.7: Degenerate case.

the dispersion equation (2.20) we get

Pac,opt =
un
vn ac,opt

=
Au
Av

=
C1 + C2e

−iqa

(C1 + C2)−m1ω2
ac,opt

. (2.24)

At very long waves (q → 0) we get (Problem 2.3)

Pac = 1 , Popt = −m2

m1

(2.25)

So, we see that in the acoustic mode all the atoms move next to synchronously, like in
an acoustic wave in homogeneous medium. Contrary, in the optical mode; the gravity
center remains unperturbed. In an ionic crystal such a vibration produce alternating
dipole moment. Consequently, the mode is optical active. The situation is illustrated in
Fig. 2.8.

Vibration modes of 3D lattices

Now we are prepared to describe the general case of 3D lattice. Assume an elementary cell
with s different atoms having masses mk. We also introduce the main region of the crystal
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Figure 2.8: Transverse optical and acoustic waves.

as a body restricted by the rims Lai, the volume being V = L3V0 while the number of sites
N = L3. The position of each atom is

Rk
n = an + Rk . (2.26)

Here Rk determines the atom’s position within the cell. Similarly, we introduce displace-
ments ukn. The displacement-induced change of the potential energy Φ of the crystal is a
function of all the displacements with a minimum at ukn = 0. So, we can expand it as

Φ =
1

2

∑
all

Φαβ

(
kk′

nn′

)
uknαu

k′

n′β +
1

6

∑
all

Φαβγ

(
kk′k′′

nn′n′′

)
uknαu

k′

n′βu
k′′

n′′γ (2.27)

(Greek letters mean Cartesian projections). There are important relations between the
coefficients Φ in Eq. (2.27) because the energy should not change if one shifts the crystal
as a whole.

1. The coefficients are dependent only on the differences n− n′, n− n′′, etc.

Φαβ

(
kk′

nn′

)
= Φαβ

(
kk′

n− n′

)
. (2.28)

2. The coefficient do not change if one changes the order of columns in their arguments

Φαβ

(
kk′

nn′

)
= Φαβ

(
k′k
n′n

)
. (2.29)

3. The sums of the coefficients over all the subscripts vanish.∑
n′k′

Φαβ

(
kk′

nn′

)
= 0 ,

∑
n′n′′k′k′′

Φαβγ

(
kk′k′′

nn′n′′

)
= 0 . (2.30)
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Now we can formulate the Newton equations

mkü
k
nα =

∑
n′k′β

Φαβ

(
kk′

nn′

)
uk
′

n′β (2.31)

As in 1D case, we search the solution as (it is more convenient to use symmetric form)

ũknα =
1
√
mk

Akα(q)ei(qan−ωt) . (2.32)

Here we introduce wave vector q. Just as in 1D case, we can consider it in a restricted
region

− π < qai < π (2.33)

that coincides with the definition of the first Brillouin zone (or the Wigner-Seitz cell). The
wave vector q is defined with the accuracy of an arbitrary reciprocal vector G, the q-space
is the same as the reciprocal lattice one.

Finally, we come to the equation (2.20) with

Dkk′

αβ (q) =
∑
n′

1
√
mkmk′

Φαβ

(
kk′

nn′

)
eiq(an′−an) (2.34)

This matrix equation is in fact the same is the set of 3s equations for 3s complex un-
knowns Akα. Now we come exactly to the same procedure as was described in the previous
subsection. In fact, the dispersion equation has the form (2.21).

Let us discuss general properties of this equation. One can show (see Problem 2.5) that

Dkk′

αβ =
[
Dk′k
βα

]∗
, (2.35)

i. e. the matrix D̂ is Hermitian. Consequently, its eigenvalues are real (see Appendix B).
One can show that they are also positive using the request of the potential energy to be
minimal in the equilibrium.

The general way is as follows. One should determine 3s eigenvalues of the matrix D̂ for
a given q to get the values of ωj(q). These values have to be substituted into Eq. (2.20) to
find corresponding complex amplitudes Akjα(q) which are proportional to the eigenvectors

of the dynamic matrix D̂. One can show form its definition that in general case

D̂(−q) =
[
D̂(q)

]∗
. (2.36)

That means important properties of solutions:

ωj(−q) = ωj(q) , Akjα(−q) =
[
Akjα(q)

]∗
. (2.37)

These properties are in fact the consequences of the time reversibility of the mechanical
problem we discuss.
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Finally, one can construct a set of iso-frequency curves ωj(q) =const which are periodic
in q-space the period being the reciprocal lattice vector G. The symmetry of those curves
are determined by the lattice symmetry.

In the end of this subsection, we analyze the long wave properties of 3D lattice. It is
clear, that at q = 0 the component of D̂-matrix are real. If we put the real displacement
Akjβ/

√
mk to be k-independent and use the property (2.30) we readily get ωj(0) = 0 for all

the 3 components α = 1, 2, 3. So, there are 3 acoustic branches and 3s-3 optical ones. To
describe their behavior we should write down the dynamic equation for real displacements
for q = 0 as

ω2(0)mk
Akα(0)
√
mk

=
∑
k′βn′

1
√
mk′

Φαβ

(
kk′

nn′

)
Ak
′

β (0) (2.38)

and then sum over k (over the atoms in the primitive cell). Using the property (2.30)

∑
n′k′

Φαβ

(
kk′

nn′

)
= 0

we get ∑
k

mku
k
nα = 0 , (2.39)

i. e. the center of gravity for optical modes remains constant. A typical vibration spectrum
is shown in Fig. 2.9

Figure 2.9: Typical vibration spectrum in 3D case.

Continual Approximation for Lattice Vibrations

To elucidate the difference between acoustic and optical vibrations we discuss here the long
wave limit in continual approximation.
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Acoustic vibrations

According to the theory of elasticity, one can write equations of motion as

ρ
∂2u

∂t2
= (Υ + Λ)grad divu + Υ∇2u (2.40)

where ρ is the mass density while Υ, Λ are elastic constants. It is known that ϑ = div u(r, t)
is the relative volume change while ϕ = 1

2
curl u is the rotation angle. Taking into account

that
curl grad ψ(r) = 0, div curl k(r) = 0 , ∇2 ≡ div grad ,

we can obtain the equations for the quantities ϑ, ϕ:

∂2ϑ

∂t2
= s2

l∇2ϑ , (2.41)

∂2ϕ

∂t2
= s2

t∇2ϕ , (2.42)

where

sl =

√
2Υ + Λ

ρ
, st =

√
Υ

ρ
. (2.43)

If u = A exp(iqr− iωt) we get

ϑ = div u = iqu ,

ϕ =
1

2
[qu] . (2.44)

So, we see that the compression ϑ wave is longitudinal while the ϕ rotation wave is transver-
sal. These wave are the analogs of 3 acoustic modes in a crystal. We can also calculate the
number of the vibrations if we restrict ourselves with a cube with the rim L and put zero
boundary conditions. We get ϑ = A sin(ωt) sin(qxx) sin(qyy) sin(qzz) for each mode with
qi = ni

π
L

. We have ω = qs = s
√
q2
x + q2

y + q2
z for each branch. Consequently, the number

of vibrations in the region R, R + dR where R =
√∑

i n
2
i is

g(ω) dω =
∑
l,t

4πR2 dR

8
=
V

2π2

(
1

s3
l

+
2

s3
t

)
ω2 dω . (2.45)

Optical vibrations

Consider a ionic crystal with 2 ions in a primitive cell with effective charges ±e∗. Denoting
the corresponding displacements as u± and the force constant as κ we get the following
equations of motion

M+
d2u+

dt2
= −κ(u+ − u−) + e∗Ee ,

M−
d2u−
dt2

= −κ(u− − u+)− e∗Ee (2.46)
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where Ee is the effective electric field acting from the external sources and from other ions.
Then, let us introduce reduced mass

1

Mr

=
1

M+

+
1

M−

and relative displacement s = u+ − u−. Combining Eqs. (2.46) we obtain

Mr
d2s

dt2
= −κs + e∗Ee . (2.47)

Now one should express the effective field Ee through s to make all the set of equations
complete. The effective field differs from average field, E, by the contribution of the
polarization, P. In this way, we get the following set of equations for the normalized
displacement w =

√
N0Mrs

ẅ + γ11w − γ12E = 0

γ12w + γ22E−P = 0 ,

∇(E + 4πP) = 0 . (2.48)

The coefficients γik can be expressed through dielectric parameters of the crystal (see
derivation below)

γ11 = ω2
0 , γ12 = ω0

√
ε0 − ε∞

4π
, γ22 =

ε∞ − 1

4π
. (2.49)

Here

ω2
0 =

κ

Mr

− 4πN0e
∗2(ε∞ + 2)

9Mr

, (2.50)

While ε0(∞) are, respectively, static and high-frequency dielectric constants. Finally, we
come to the set of equations

d2w

dt2
= −ω2

0w + ω0

√
ε0 − ε∞

4π
E ,

P = ω0

√
ε0 − ε∞

4π
w +

ε∞ − 1

4π
E .

(2.51)

This is the final set of equation we should analyze. To do it we split the displacement
w into the potential wl (curl wl = 0) and solenoidal wt (div wt = 0) parts. It the absence
of free charges

div D = 0→ div E = −4πdiv P .

Using (2.51) we get

E = −ω0

ε∞

√
4π(ε0 − ε∞)wl .
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Substituting this relation into the equations (2.51) and separating potential and solenoidal
parts we get

d2wt

dt2
= −ω2

0wt ,

d2wl

dt2
= −ω2

0

ε0
ε∞

wl . (2.52)

Consequently, we come to the picture of longitudinal and transversal optical modes with

ωl
ωt

=

√
ε0
ε∞

(2.53)

(the Lyddane-Sax-Teller relation).
The ion motion in the transversal and longitudinal modes is shown in Fig. 2.10 taken

from the book [4]. We see that the two types of optical vibrations differ because of the
long-range electric forces which are produced only by longitudinal modes. Consequently,
they are called polar. The difference between the frequencies of polar and non-polar modes
depends on the crystal ionicity and allows one to estimate the latter.

Derivation of the constants γik

In a cubic crystal, where polarizability is a scalar, we have

P = N0
e∗s + αE

1− (4N0π/3)α
(2.54)

and introduce the dielectric function ε according to the electrostatic equation for the dis-
placement vector

D = E + 4πP = εE . (2.55)

This function is dependent on the vibration frequency ω. We get

P =
ε− 1

4π
E . (2.56)

Actually, ε is frequency dependent and at high frequencies ions cannot react on the a.c.
electric field. Let us denote this limit as ε∞ and put for this limit s = 0 in Eq. (2.54).
Combining (2.54) for s = 0 with (2.56) we get

α =
ε∞ − 1

(4πN0/3)(ε∞ + 2)
. (2.57)

Then we can substitute it once more in Eq. (2.54) and get

P = N0
e∗(ε∞ + 2)

3
s +

ε∞ − 1

4π
E . (2.58)
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Figure 2.10: Optical modes of vibration of a ion crystal.

Making use of this equation we get

Mr
d2s

dt2
= −Mrω

2
0s +

e∗(ε∞ + 2)

4π
E (2.59)

where

ω2
0 =

κ

Mr

− 4πN0e
∗2(ε∞ + 2)

9Mr

. (2.60)

Usually the normalized displacement w =
√
N0Mrs is introduced, so finally we come

to the set of equations

d2w

dt2
= −ω2

0w +

√
N0

Mr

e∗
ε∞ + 2

3
E ,

P =

√
N0

Mr

e∗
ε∞ + 2

3
w +

ε∞ − 1

4π
E . (2.61)
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It is reasonable to introduce the static dielectric constant ε0 from the request of van-
ishing of the right-hand side of Eq. (2.59):

ε0 − ε∞ =
N0

Mr

e∗2
4π(ε∞ + 2)2

9ω2
0

. (2.62)

Thus we arrive to the set of equations to be analyzed.

Optical Vibration–Light Interaction

It is clear that optical vibrations in ionic compounds should interact with electromagnetic
waves. To take this interaction into account one should add the Maxwell equations to the
complete set of equations for the vibrations. We have2

[∇×B] =
1

c

(
∂E

∂t
+ 4π

∂P

∂t

)
,

[∇× E] = −1

c

∂B

∂t
,

(∇ ·B) = 0 ,

∇ · (E + 4πP) = 0 ,

ẅ + γ11w − γ12E = 0 ,

P = γ12w + γ22E . (2.63)

Here B is magnetic induction,

γ11 = ω2
0 , γ12 = ω0

√
ε0 − ε∞

4π
, γ22 =

ε∞ − 1

4π
. (2.64)

We are interested in the transversal modes, so we search solutions proportional to
exp(iqr− iωt) with

E ‖ P ‖ w ‖ x , B ‖ y , q ‖ z . (2.65)

The equations for the complex amplitudes are (Check!)

iω

c
E − iqB +

4πiω

c
P = 0 ,

iqE − iω

c
B = 0 ,

γ12E + (ω2 − γ11)w = 0 ,

γ22E − P + γ12w = 0 . (2.66)

Consequently, to get eigenfrequencies one should request

det

∣∣∣∣∣∣∣∣
ω/c 4πω/c −q 0
q 0 −ω/c 0
γ12 0 0 ω2 − γ11

γ22 −1 0 γ12

∣∣∣∣∣∣∣∣ = 0 . (2.67)

2We use the so-called Gaussian system of units.
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After the substitution of all the values of γik we get

ω4ε∞ − ω2(ω2
t + c2q2) + ω2

t c
2q2 = 0 . (2.68)

This equation is quadratic in ω2 the roots being

ω1,2 =
1

2ε∞
(ω2

t ε0 + c2q2)±

√
1

4ε20
(ω2

t ε0 + c2q2)2 − ω2
t q

2

(
c2

ε∞

)
. (2.69)

This spectrum is shown in Fig. 2.11. It is important that there is no possibility for the light

Figure 2.11: Coupled TO-photon modes. The broken lines – spectra without interaction.

with the frequencies between ωt and ωl to penetrate the crystal, it is completely reflected.
The coupled TO-vibration-photon modes are often called the polaritons. One can easily
understand that longitudinal model do not couple to the light.

2.3 Quantum Mechanics of Atomic Vibrations

Normal Co-Ordinates for Lattice Vibrations

Now we formulate the dynamic equations in a universal form to prepare them to quantum
mechanical description.

Let us introduce the eigenvectors ejk(q) of the dynamical matrix D̂ which correspond
to the eigenvalues ω2

j (q). According to the definition of eigenvectors,∑
k′β

Dkk′

αβ (q)ejk′β(q) = ω2
j (q)ejkα(q) .
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According to the properties of Hermitian matrices, the eigenvectors are orthogonal and
normalized, ∑

αk

ejkαe
∗
j′kα = δjj′

∑
j

ejkαe
∗
jk′β = δkk′δαβ . (2.70)

Also,
ejkα(q) = e∗jkα(−q) . (2.71)

The general displacements may differ from eigenvectors only by normalization. Conse-
quently, it is convenient to expand the displacements in terms of the eigenvectors as

uknα(t) =
1√
Nmk

∑
qj

ejkα(q)aj(q, t)e
iqan . (2.72)

The amplitudes aj(q, t) are called the normal co-ordinates (or normal modes). One can
prove that a(−q) = a∗(q) (otherwise we cannot obtain real displacements). The total
number of the amplitudes is 3sN (3s values for the mode’s number j and N for the
discrete q number).

Now we calculate the kinetic energy of vibrations:

T =
1

2

∑
nkα

mk(u̇
k
nα)2 . (2.73)

It is easy to show (see Problem 2.6 ) that it is equal to

T =
1

2

∑
qj

|ȧj(q, t)|2 . (2.74)

Now we come to the potential energy. After some calculations (see Problem 2.7) we get

Φ =
1

2

∑
qj

ω2
j (q) |aj(q, t)|2 , (2.75)

the total energy being

E =
1

2

∑
qj

[
|ȧj(q, t)|2 + ω2

j (q) |aj(q, t)|2
]
. (2.76)

We see that the total energy is the sum of the energies of independent oscillators. The
quantities aj(q, t) are called the complex normal co-ordinates. It is convenient to come to
the so-called real normal co-ordinates to apply all the laws of mechanics. Usually, it is
done with the help of the so-called Pierls transform. Let us introduce real co-ordinates
Qj(q) and real canonic momentum Pj(q) ≡ Q̇j(q) with the help of the transform

aj(q) =
1

2

[
Qj(q) +Q∗j(−q)

]
+

+
i

2ωj(q)

[
Q̇j(q)− Q̇∗j(−q)

]
. (2.77)
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We observe that the condition aj(q) = a∗j(−q) is automatically met. Making use of the
equality ωj(−q = ωj(q) one can easily show that the co-ordinates Qj obey the equation

Q̈j(±q) = −ω2
j (q)Qj(±q) . (2.78)

After very simple calculations (see Problem 2.8) we get

E =
1

2

∑
qj

[
Q̇2
j(q) + ω2

j (q)Q2
j(q)

]
. (2.79)

Now we can use the general principles of mechanics and introduce canonic momenta as

Pj(q) =
∂E
∂Q̇j

= Q̇j(q) . (2.80)

Finally, we can write down the classical Hamilton function of the system as

H(Q,P ) = E =
∑
qj

[
P 2
j (q)

2
+ ω2

j (q)
Q2
j(q)

2

]
. (2.81)

As a result, we have expressed the classical Hamiltonian as the one for the set of indepen-
dent oscillators.

At the end of this section we express the displacement in terms of the canonic variables
(later we will need this expression)

uknα =
1√
Nmk

∑
qj

Re

{
ejαk(q)

[
Qj(q) +

i

ωj(q)
Pj(q)

]
eiqan

}
. (2.82)

Quantization of Atomic Vibrations: Phonons

The quantum mechanical prescription to obtain the Hamiltonian from the classical Hamil-
ton function is to replace classical momenta by the operators:

Q̇j(q) = Pj(q)→ P̂j(q) =
~
i

∂

∂Qj(q)
. (2.83)

Consequently we come to the Schrödinger equation

Ĥ(P̂ , Q) =
∑
qj

{
−~2

2

∂2

∂Q2
j(q)

− 1

2
ω2
j (q)Q2

j(q)

}
. (2.84)

It is a sum of the Schrödinger equations for independent oscillators with the mass equal
to 1, co-ordinate Qj(q) and eigenfrequency ωj(q). It is known that in such a case the
total wave function is the product of the one-oscillator functions. So, let us start with
one-oscillator equation for the wave function ψ

− ~2

2

∂2ψ

∂Q2
+

1

2
ω2Q2ψ = εψ . (2.85)
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Its solution is

ψ = ψN(Q) =
( ω
π~

)1/4 1√
2NN !

e−ωQ
2/2~HN

[(ω
~

)1/2

Q

]
,

ε = εN = ~ω(N + 1/2) . (2.86)

Here N is the oscillator’s quantum number, HN(ξ) is the Hermit polynom which is depen-
dent on the dimensionless co-ordinate

ξ = Q
√
ω/~ . (2.87)

In the following we will need the matrix elements of the operators Q and P̂ defined as

〈α|Â|β〉 ≡
∫ ∞
−∞

dQψ∗α(Q)Âψβ(Q) .

According to the table of integrals,

〈N ′|Q̂|N〉 =

√
~

2ω
×


√
N , if N ′ = N − 1 ,√
N + 1 if N ′ = N + 1 ,

0 , otherwise ;

〈N ′|P̂ |N〉 = i

√
~ω
2
×

 −
√
N , if N ′ = N − 1 ,√

N + 1 if N ′ = N + 1 ,
0 , otherwise .

(2.88)

The equations introduced above describe the quantum mechanical approach to the
lattice vibrations. In the following we employ this system to introduce a very general and
widely used concept of secondary quantization.

Second Quantization

In the Q-representation, the total wave function is the symmetrized product of the oscil-
lator wave functions with quantum numbers Njq. Because it is impossible to discriminate
between the modes with given jq the numbers Njq completely describe the system.

To describe quasiparticles it is convenient to introduce operators which act directly
upon the occupation numbers Njq. They are introduced as

b =
( ω

2~

)1/2

Q̂+ i

(
1

2~ω

)1/2

P̂ ,

b† =
( ω

2~

)1/2

Q̂− i
(

1

2~ω

)1/2

P̂ . (2.89)

One can show directly that

bψN =
√
NψN−1 ,

b†ψN =
√
N + 1ψN+1 . (2.90)
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We see that the operator b† increases the occupation number by one while the operator
b decreases this number also by one. Consequently, the operators are called creation and
annihilation operators.

Let us consider the properties of the creation and annihilation operators in more details.
According to quantum mechanics

QP̂ − P̂Q ≡ [Q, P̂ ] = i~ . (2.91)

Inserting in these commutation relations the definitions (2.89) we get

bb† − b†b = [b, b†] = 1 (2.92)

This relation could be generalized for the case of different modes because the modes with
different jq are independent under harmonic approximation. Consequently. the corre-
sponding operators commute and we get

[bj(q), b†j(q)] = δjj′δqq′. (2.93)

So we come to the picture of independent particles. To be more precise, they are called
quasiparticles.3 The quasiparticles obeying the commutation relations (2.93) are called
bosons, they are described by the Bose-Einstein statistics.

Now we can insert the operators b, b† into the Hamiltonian (2.84). After very simple
algebra (Check!) we get

H =
∑
j,q

~ωj(q)

2

[
bj(q)b†j(q) + b†j(q)bj(q)

]
=
∑
j,q

~ωj(q)
[
b†j(q)bj(q) + 1/2

]
. (2.94)

Applying the product b†b to the wave function ψN we get

b†bψN = NψN . (2.95)

Consequently, the operator b†j(q)bj(q) has eiqnevalues Nj,q.
Finally, it is useful to remember matrix elements of the creation and annihilation op-

erators:
〈N ′|b|N〉 =

√
NδN ′,N−1 , 〈N ′|b†|N〉 =

√
N + 1δN ′,N+1 . (2.96)

As will be demonstrated in the following, the normal vibrations behave as particles
with the energy ~ωj(q) and quasimomentum ~q. The quasiparticles are called phonons.
The part quasi is very important for some reasons which we will discuss in detail later. In
particular, we have obtained the effective Hamiltonian as sum of the independent oscillator
Hamiltonians under the harmonic approximation where only quadratic in displacement
terms are kept. The higher approximation lead to an interaction between the introduced
quasiparticles. It will be shown that the conservation laws for the quasiparticle interaction

3We will see the reasons later.
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differ from the ones for free particles, namely
∑

i ~qi is conserved with the accuracy of the
arbitrary reciprocal lattice vector G.

It is convenient to introduce operators for lattice vibrations. Using definitions of the
operators bq and b†q and Eq. (2.82) we obtain

ûknα(t) =

√
~

2Nmk

∑
qj

ejαk(q)
√
ωjq

[
bqe

iqan−iωjqt + b†qe
−iqan+iωjqt

]
. (2.97)

2.4 Phonon Dispersion Measurement Techniques

Here be describe very briefly the main experimental techniques to investigate phonon
spectra.

Neutron Scattering

In this method, neutron with the energy E = p2/2Mn, Mn = 1.67 · 10−24 g are incident
upon the crystal. The phonon dispersion is mapped exploiting the momentum-energy
conservation law

E ′ − E =
∑
j,q

~ωj(q)(N ′jq −Njq) ,

p′ − p = −
∑
j,q

~q(N ′jq −Njq) + ~G . (2.98)

The processes involving finite G are called the Umklapp ones.

Zero Phonon Scattering

If no phonon are emitted or absorbed we have the same conditions as for X-ray scattering,
the Laue condition p′ − p = ~G.

One Phonon Scattering

We get:

• Absorption:

E ′ = E + ~ωj(q) ,

p′ = p + ~q + ~G . (2.99)

• Emission:

E ′ = E − ~ωj(q) ,

p′ = p− ~q + ~G . (2.100)
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Making use of the periodicity of the phonon spectra ωj(q) we have

• Absorption:
p′2

2Mn

=
p2

2Mn

+ ~ωj
(

p + p′

~

)
,

• Emission
p′2

2Mn

=
p2

2Mn

− ~ωj
(

p− p′

~

)
. (2.101)

The equations allow one to analyze the phonon spectra.

Light Scattering

Usually the photons with k ∼ 105 cm−1 are used that corresponds to the photon energy ≈ 1
eV. Because this wave vector is much less than the size of the Brillouin zone only central
phonons contribute. The interaction with acoustic phonons is called Brillouin scattering
while the interaction with optical modes is called the Raman one.

Once more one should apply the conservation laws. Introducing photon wave vector k
we get

ω′ = ω ± ωj(q) ,

ηk′ = ηk± q + G (2.102)

where η is the refractive index, + corresponds to a phonon absorption (the so-called anti-
Stokes process) while− correspond to an emission (Stokes process). It is clear that ωj(q)�
ω. Consequently, |k| ≈ |k′| and

q = 2
ωη

c
sin

θ

2
,

where θ is the scattering angle. The corresponding phonon frequency is determined as ∆ω.

2.5 Problems

2.1. Derive the dispersion relation (2.9).
2.2. Derive the expression (2.13).
2.3. Derive Eq. (2.25).
2.4. Prove the relation of the Section 2.2.
2.5. Prove the relation (2.35).
2.6. Prove the equation (2.74).
2.7. Prove the expression (2.75) for the potential energy.
2.8. Prove the expression (2.79).
2.9. Prove the expression (2.90).



Chapter 3

Electrons in a Lattice. Band
Structure.

In this chapter the properties of electron gas will be considered. Extra information can be
found in many books, e. g. [1, 2].

3.1 General Discussion. Electron in a Periodic Field

To understand electron properties one should in general case solve the Schrödinger equation
(SE) for the whole system of electrons and atoms including their interaction. There are
several very important simplifications.

• The atomic mass M is much greater than the electron one m. So, for the beginning,
it is natural to neglect the atomic kinetic energy, considering atoms as fixed. In this
way we come to the SE for the many-electron wave function,[

− ~2

2m

∑
i

∇2
i

+ V (r,R)

]
ψ = Eψ (3.1)

where atomic co-ordinates are considered as external parameters

ψ(r,R) , E(R) .

• We will see that the behavior of interacting electrons is very similar to the one of
non-interacting particles (i. e. gas) in an external self-consistent field produced by
the lattice ions and other electrons. It is very difficult to calculate this field but it is
clear that it has the same symmetry as the lattice. So let us take advantage of this
fact and study the general properties of the electron motion.

45
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3.1.1 Electron in a Periodic Potential

Let us forget about the nature of the potential and take into account only the periodicity
condition

V (r + a) = V (r) . (3.2)

The one electron SE

− ~2

2m
∇2ψ(r) + V (r)ψ(r) = εψ(r) (3.3)

should also have the solution ψ(r + a) corresponding to the same energy. Consequently, if
the level ε is non-degenerate we get

ψ(r + a) = Cψ(r) , C = constant . (3.4)

According to the normalization condition |C|2 = 1 one can write

C = eiϕ(a) (3.5)

where ϕ is some real function of the lattice vector. Now we can apply the translation
symmetry and make consequential displacements, a and a′. We get

C(a)C(a′) = C(a + a′) (3.6)

that means the ϕ-function should be linear

ϕ(a) = pa/~ . (3.7)

It is clear that vector p is defined with the accuracy of ~G where G is the reciprocal lattice
vector.

Finally, the general form of the electron wave function in a lattice is

ψ(r) = eipr/~u(r) (3.8)

where
u(r + a) = u(r) (3.9)

is a periodic function. The expression (3.8) is known as the Bloch theorem.
The Bloch function (3.8) is very similar to the plane wave, the difference being the

presence of the modulation u. The vector p is called quasimomentum because it is defined
with the accuracy ~G. Because of periodicity, we can consider only one cell in the reciprocal
lattice space.

As in the situation with lattice vibrations, we apply cyclic boundary conditions, so the
vector p is a discrete variable:

pi =
2π~
Li

ni , (3.10)

the number of states being ∏
i

∆ni =
V

(2π~)3

∏
i

∆pi . (3.11)
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It means that the density of states is V/(2π~)3. We will very often replace the sums over
discrete states by the integrals

V
∑
i

→ V
∫

2 d3p

(2π~)3
≡ V

∫
(dp) .

Here we have taken into account that an electron has spin 1/2, the projection to a given
axis being ±1/2 that doubles the number of states. Thus, the energy levels are specified
as εl(p) where p acquires N values where N is the number of primitive cells in the sample.
Hence, the total number of states for a quantum number l is 2N .

The functions εl(p) are periodic in the reciprocal space, so they have maximal and
minimal values and form bands. These band can overlap or some energy gaps can exist.

Let us consider some other general properties of wave functions. If one writes down
the complex conjugate to the Schrödinger equation and then replaces t → −t he gets the
same equation with the Hamiltonian H∗. But it is known that Hamiltonian is a Hermitian
operator and H = H∗. It means that if

ψlp(r, t) = exp [−iεl(p)t/~]ψlp(r)

is an eigenfunction of H the function ψ∗lp(r,−t) is also the eigenfunction. At the same time,

after the shift a these functions acquire different factors, e±ipa/~ respectively. It means

εl(p) = εl(−p) .

In the following we will specify the region of the reciprocal space in the same way as
for lattice vibrations, namely, Brillouin zones (BZ). If the lattice symmetry is high enough
the extrema of the functions εl(p) are either in the center or at the borders of BZ.

3.2 Tight Binding Approximation

To get some simple example we consider the so-called tight-binding-approximation. Let
us start with the 1D case and assume that the overlap of the electron shells is very small.
Consequently, this overlap can be considered as perturbation and we start with the poten-
tial

V (x) =
∑

U(x− na) , (3.12)

the SE equation being

− ~2

2m

d2ψ

dx2
+
∑
n

U(x− na)ψ(x) = εψ(x) . (3.13)

Let the exact wave functions be

ψp(x) = eipx/~up(x)
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with the eigenvalues ε(p). We construct the so-called Wannier functions as

wn(x) =
1√
N

∑
p

e−ipna/~ψp(x) , (3.14)

where N is the total number of atoms in the chain while p belongs to the 1st BZ. One can
check (Problem 3.1) that the inverse transform is

ψp(x) =
1√
N

∑
n

eipna/~wn(x) . (3.15)

The Wannier functions are orthogonal and normalized (Problem 3.2).

It is important that the Wannier function wn is large only near the nth ion position
(without Bloch modulation it will be δ-function δ(x−na)). Moreover, because of periodicity

wn(x) = w0(x− na) .

Now we can substitute the function (3.15) into the exact SE and make the auxiliary trans-
form

H =
∑
n

[
− ~2

2m

d2

dx2
+ U(x− na) + hn(x)

]
where

hn(x) ≡ V (x)− U(x− na)

between the exact potential V (x) and the nearest atomic one. We get

∑
n

[
− ~2

2m

d2

dx2
+ U(x− na)

]
eikanwn(x) +

∑
n

hn(x)eikanwn(x) =

= ε(k)
∑
n

eikanwn(x) . (3.16)

Here we have introduced the electron wave vector k ≡ p/~.

The product

hn(x) eikanwn(x)

at is small because it contains only the items U(x − ma)wn(x) for m 6= n, and we can
neglect it as a zeroth approximation. As a result we get

w(0) = ψ0(x)

where ψ0(x) is the wave function of a free atom. Consequently

ε(0)(p) = ε0 .
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In the next approximation we put w = w(0) + w(1) and find∑
n

[
− ~2

2m

d2

dx2
+ U(x− na)− ε0] eikanw(1)

n (x) =

= −
∑
n

hn(x)eikanw(0)
n (x) + (ε(p)− ε0)

∑
n

eikanw(0)
n (x) . (3.17)

This is non-uniform linear equation for w
(1)
n . Since the Hamiltonian is Hermitian, Eq. (3.17)

has a solution only if the r.h.s. is orthogonal to the solution of the corresponding uniform
equation with the same boundary conditions. This solution is w

(0)
n .

As a result, we get

ε(p)− ε0 =

∑
n h(n)eikan∑
n I(n)eikan

(3.18)

where

h(n) =

∫
dxψ∗0(x)hn(x)ψ0(x− na) ,

I(n) =

∫
dxψ∗0(x)ψ0(x− na) . (3.19)

The atomic wave function can be chosen as real, so h(−n) = h(n), I(−n) = I(n), both
functions rapidly decrease with increasing n (small overlap!). Finally, we get (Problem 3.3)

ε− ε0 = h(0) + 2[h(1)− h(0)I(1)] cos(ka) . (3.20)

The 3D case is more complicated if there are more than 1 atom in a primitive cell.
First, atoms’ positions are connected by the symmetry transforms which differ from a
simple translation. Second, atomic levels for higher momenta are degenerate. We discuss
here the simplest case with 1 atom per a primitive cell and for s-states of the atoms having
spherical symmetry. In this case we come to a similar expression

ε(p)− ε0 =

∑
h(n)eika∑
I(n)eka

. (3.21)

In a bcc lattice taking into account nearest neighbors we get

a = (a/2)(±1, ±1, ±1) ,

and
ε(k)− ε0 = h(0) + 8W cos(kxa/2) cos(kya/2) cos(kza/2) , (3.22)

where W = [h(1) − h(0)I(1)] is the characteristics of bandwidth. In a similar case of fcc
lattice one gets (Check!)

ε(k)− ε0 = h(0) + 4W [cos(kxa/2) cos(kya/2) + cos(kya/2) cos(kza/2) +

+ cos(kza/2) cos(kxa/2)] . (3.23)
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In a sc lattice one gets (Problem 3.4)

ε(k)− ε0 = h(0) + 2W [cos(kxa) + cos(kya) + cos(kza)] . (3.24)

The physical meaning of the results is the spreading of atomic levels into narrow bands
(Fig. 3.2)

Ea

Eb

Ec
N-fold

N-fold

N-fold

Atomic separation

E

Solid

Figure 3.1: Spreading of atomic levels into bands

The tight binding approximation is useful when the overlap is small (transition and
rare earth metals). Another application is to produce starting empirical formulas having
proper symmetry.

3.3 The Model of Near Free Electrons

Now we come to the opposite limiting case where electrons are almost free. We start from
1D model for a very weak periodic potential. The starting approximation is a plane wave
(we have in mind periodic boundary conditions)

1√
L
eikx , k = p/~ , (3.25)

the energy being
ε(0)(k) = ~2k2/2m. (3.26)

We can expand the periodic potential as

V (x) =
∑
n

Vne
2πinx/a (3.27)

where

V (k, k′) =
1

L

∫
dx V (x)e−i(k−k

′)x = Vnδ

(
k − k′ − 2πn

a

)
.
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The first perturbation correction ε(1) = V0 is not important (shift of energy) while the
second one is

ε(2)(k) =
∑
n6=0

|Vn|2

ε(0)(k)− ε(0)(k − 2πn/a)
(3.28)

The perturbation theory is valid if ε(2) � ε(1) that cannot be met at small denominators.
At the same time, at k → πn/a the quantity k′ → −πn/a and denominator tends to zero.
Consequently, one has to use the perturbation theory for degenerate states. So let us recall
the famous problem of quantum mechanics.

Assume that the functions ψi where i = 1, 2 correspond to the states 1, 2. We chose
the wave function as their superposition,

ψ = A1ψ1 + A2ψ2 .

Substituting this function into SE we get

A1(ε1 − ε)ψ1 + V (A1ψ1 + A2ψ2) + A2(ε2 − ε)ψ2 = 0 .

Then we multiply the equation first by ψ∗1 and second by ψ∗2. Integrating over x we get

(ε1 − ε+ V0)A1 + VnA2 = 0 ,

V ∗nA1 + (ε2 − ε+ V0)A2 = 0 . (3.29)

As a result, we get a quadratic equation for ε (we include the constant V0 into this quantity):

ε2 − (ε1 + ε2)ε+ ε1ε2 − |Vn|2 = 0 ,

which has solutions

ε =
ε1 + ε2

2
±
√

(ε1 − ε2)2

4
+ |Vn|2 . (3.30)

The sign is chosen from the request that far from the “dangerous” point ε should be close
to ε0. As a result, the energy has a drop 2|Vn| near the points k = ±πn/a. This situation
is illustrated in Fig. 3.2

Because the energy spectrum is periodic in k-space, it is convenient to make use of the
periodicity of ε in k-space and to subtract from each value of k the reciprocal lattice vector
in order to come within BZ. So we come from the left panel to the right one. We have once
more the picture of bands with gaps in between, the gaps being small in comparison with
the widths of the allowed bands.

In the 3D case the periodicity of the potential is taken into account by the expansion

V (r) =
∑
G

VGe
iGr

where G is the reciprocal lattice vector, the perturbation theory being destroyed at

ε(0)(k) = ε(0)(k−G) .
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Figure 3.2: Energy spectrum in a weak periodic potential.

Substituting ε(0) = ~2k2/2m we get

kG = G/2 . (3.31)

It is just the equation for the plane boundary of the BZ.

Thus the structure of BZ is extremely important for understanding of electron proper-
ties.

3.4 Main Properties of Bloch Electrons

3.4.1 Effective Mass

Let us discuss general properties on electrons in periodic potential. To make it as simple
as possible we start with the case of a simple cubic crystal in the tight binding limit. From
the expression (3.24) we see that there is a minimum b in the BZ center k = 0. Near the
minimum expanding (3.24) for small product kia� 1 we get

ε = εb +Wk2a2 , k =
√
k2
x + k2

y + k2
z , (3.32)

where εb is the energy of the minimum. So the spectrum is just the same as the one of a
particle with the effective mass

m∗n(b) =

(
∂2ε

∂p2
x

)−1

b

=
~2

2Wa2
(3.33)
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(the subscript n indicates that the material is of n-type, electron-like). Now we can analyze
the BZ boundary a with ki ≈ π/a. Substituting k′i = π/a − ki and expanding (3.24) in
powers of k′ia� 1 we get

ε = εa −Wa2k′2 . (3.34)

In a similar way, we get the expression for the effective mass

m∗n(a) = − ~2

2Wa2
(3.35)

that is negative. Very often such a quasiparticle is called a hole (see later) and we define
its mass as the electron mass with opposite sign. So, in a simple cubic crystal the hole
mass, m∗p = |m∗n|, near the band top is the same as the electron mass near its bottom.

In the general case one can expand the energy as in lth band near an extremum as

εl(k) =
1

2

∑
α,β

(
∂2ε(k)

∂kα∂kβ

)
0

(kα − kα0)(kβ − kβ0) (3.36)

and introduce the inverse effective mass tensor

(m−1)αβ =

(
∂2ε(k)

∂kα∂kβ

)
0

(3.37)

This 2nd-order tensor can be transformed to its principal axes.

3.4.2 Wannier Theorem → Effective Mass Approach

Now we come to a very important concept of solid state physics which allows one to treat
electrons in a periodic field like ordinary particles - to the so-called effective mass approach.

We know that the energy in a given band is periodic in the k-space that is the same as
the reciprocal lattice space. So we can expand

εl(k) =
∑
a

cae
ika (3.38)

where a are lattice vectors (Check!). How does the operator

exp (a∇)

act upon the Bloch function? One can immediately show that it is just the operator, which
shifts the co-ordinate by a (Problem 3.5):

exp(a∇)ψl(r) = ψl(r + a) . (3.39)

Then we come to the very important formula:

εl(−i∇)ψl(r) = εl(k)ψl(r) . (3.40)
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This relation is called the Wannier theorem. It is valid only if the spectrum is non-
degenerate in the point k.

So we come to the following prescription. As far as we know the spectrum εl(k), we
can replace k → −i∇ in the SE (which can also contain external fields) and analyze the
electron’s quantum dynamics. If we return to the situation where quadratic expansion is
possible we come to the problem of a particle with (anisotropic) effective mass which can
strongly differ from the free electron mass m0.

It is important to note that the prescription has essentially single-band character, it
needs a very serious generalization if the bands are degenerate (or the gaps are narrow and
interband transitions are possible). It is important in many situations in semiconductor
crystals and we will come back to this point in the corresponding Section.

3.5 Electron Velocity

Let us calculate quantum mechanical average electron velocity 〈v〉 in a Bloch state γ ≡ lk.
For a free electron one would obtain

〈v〉 =
1

m0

〈p〉 = − i~
m0

〈γ|∇|γ〉 =
~k

m0

.

It is natural that for a quantum particle the average velocity is just the group velocity of
the wave package representing quantum particle,

v =
∂ε

∂p
=

1

~
∂ε

∂k
(3.41)

(see Problem 3.6).
We see that if the spectrum is determined by quadratic expansion we get the usual

expression for a particle with the mass m∗. In and external field we get the Newton
equation

m∗
∂v

∂t
= F .

3.5.1 Electric current in a Bloch State. Concept of Holes.

Suppose that the electron has the charge −e (we suppose e to be positive). The electric
current is

jγ = −evγ . (3.42)

We know that ε(−k) = ε(k). Consequently, v(−k) = −v(k) and one can easily show that∑
v(k) = 0 (3.43)

where summation is performed inside the BZ. To get the total current one should multiply
the equation (3.42) by 2 (number of spin projections). Taking into account relation (3.43)
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one can prove that the total current of completely filled band vanishes. It is a very important
statement. It remains valid also in an external electric field (if the field is small enough
and electrons are not transferred to higher bands).

If the band is only filled partly, the total current is determined by the difference of
filled states with k and −k. To formulate the current we introduce the occupation factor
νn(k, s) which is equal to 1 if the state with the quasimomentum ~k and spin s is occupied
and 0 otherwise. One can also introduce the occupation number of holes as

νp(k, s) = 1− νn(k, s)

which characterizes the probability of empty states. The current can be expressed as

j = −e
∑
k,s

νn(k, s)v(k) = e
∑
k,s

νp(k, s)v(k)

(the current of a completely filled band is zero!). So we can express the current of a partly
full band as the current of holes with the charge +e > 0.

To get a more deep analogy let us calculate the energy current due to the flux of
electrons and holes. Characterizing the energy current in a state k as v[ε(k)− eϕ] where
ϕ is the electric potential we get

w =
∑
k,s

νn(k, s)[ε(k)− eϕ]v(k) =
∑
k,s

[1− νp(k, s)][ε(k)− eϕ]v(k) =

=
∑
k,s

[ε(k)− eϕ]v(k) +
∑
k,s

νp(k, s)[−ε(k) + eϕ]v(k) (3.44)

So we see that holes can be considered as particles with the energy −ε(k). The usual way
to treat the quasiparticles near the top of the band where the expansion (3.34) is valid is
to define the hole energy as

εp(k) = εa − εn(k) , mp = −mn > 0

where subscript n characterizes an electron variable. In such a way we come to the de-
scription of the particles with the charge e and effective mass mp.

3.6 Band Filling and Classification of Materials

We have discussed the picture of allowed bands and forbidden gaps. Now we are prepared
to discuss the actual presence of electrons in these bands.

One can discuss the following variants.

1. There is one atom per cell. Consequently, at T = 0 the band is half-full.

2. One atom per cell and 2 electrons per atom. The band is full, there is a band gap
and the next band is empty.
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3. There are two atoms per cell and each atom contributes 1 electron. The same as in
the previous case.

In the case 1 the material has high conductivity at very low temperatures, it is a metal.
The cases 2 and 3 correspond to insulators, their conductivity exponentially decreases at
low temperatures. This is shown in Fig. 3.3

Insulator Metal Semiconductor Semiconductor

E
ne

rg
y

Figure 3.3: Electron occupation of bands (schematically).

All this scheme is valid if the bands do not overlap. If the bans overlap the conduction is
usually metallic (see Fig. 3.4). Such materials are often call semimetals if effective number
of carriers is small. A typical example of semimetals is Bi.

The semiconductors are defined as insulators with small forbidden gaps. At finite tem-
peratures some electrons are excited from the lower valence band to the upper, conduction
one. So there are holes in the valence band and the electrons in the conduction one. Such
semiconductor is called intrinsic. The modern way to produce materials for electronics
is to “dope” semiconductor material with impurity atoms which introduce carriers in a
controllable way.

The impurity level are usually situated in the forbidden gap. If the impurity level
are situated near the bottom of conduction band the atom are ionized at low enough
temperatures and provide extra electrons to the band (such impurities are called donors).
Contrary, if the levels are near the top of the valence band they take electrons from the
band producing holes (they are called accepters).

We will come back to this classification later to describe special features of different
materials.
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Figure 3.4: The case of band overlap.

3.7 Dynamics of Bloch Electrons

Now we discuss dynamic properties of Bloch electrons both classical and quantum.

3.7.1 Classical Mechanics

As we have seen, under the one band approximation the Bloch electron can be described
as a particle with the classical Hamilton function

H(p, r) = ε(p) + U(r), p =~k.

Here U(r) is the total potential energy due to external fields. To take account of magnetic
field one should replace the momentum p by the kinematic one1

p→ P = p+
e

c
A(r)

where A is the vector-potential of the magnetic field which is connected with the magnetic
field H by the relation

H =curl A.

Consequently, we have

H(p, r) = ε
[
p+

e

c
A(r)

]
+ U(r), p =~k

where

U(r) = U(r)− eϕ(r) ,

1Remember that we denote the electron charge as −e.
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U is the potential energy due to non-electric fields (like deformation), while ϕ is the elec-
trostatic potential. To analyze the dynamics one should use classical Hamilton equations

ṙ = v =
∂H
∂p

, ṗ = −∂H
∂r

.

The first equation reduces to the one we have discussed earlier,

v =
∂ε

∂p

while the second one needs more care because the vector-potential is r-dependent. We get

ṗi = − ∂

∂xi
ε
[
p+

e

c
A(r)

]
− ∂U(r)

∂xi
.

The first item is

−e
c

∑
k

∂ε

∂pk

∂Ak
∂xi

= −e
c

∑
k

vk
∂Ak
∂xi

.

We will consider for simplicity the case of a homogeneous magnetic field. It is convenient
to choose the so-called Landau gauge

A =

 0
Hx
0

 , H =H ẑ. (3.45)

In this case we have

−e
c
vy
∂Ay
∂x

= −e
c
vyHz = −e

c
[v ×H]x .

As a result, we come to the very usual formula

ṗ = (−e)
(

E+
1

c
[v ×H]

)
−∇U(r), E = −∇ϕ(r). (3.46)

which is just the Newton law for the particle with the charge −e.
In the absence of external the electric field and the potential U , as one can easily show,

energy is conserved. Indeed

dε

dt
=
∂ε

∂p

∂p

∂t
= −e

c
(v [v ×H]) = 0.

So we have 2 integrals of motion,

ε = const, pz = const.

Thus we come to a geometric picture: one should take the surface ε(p) = const and
intersect this surface by the plane pz = const. The resulting line is just the electron orbit
in p-space.
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It is clear that the result is strongly dependent on the shape of the surface ε(p) = const.
In semiconductors usually only the electrons near band extrema are important and all the
orbits are closed lines.

The situation is much more rich in metals where the number of conduction electrons
is large and (because of the Pauli principle) at small temperatures they occupy the states
below the certain energy which is called the Fermi level εF . The electrons near the surface

ε(p) = εF

(the Fermi surface, FS) are most important for all the properties of metals. If the Fermi
surface is confined within one BZ it is called closed. In general, FS can touch the boundaries
of the BZ. In this case it is called open. The examples of closed and open FS in 2D case
are shown in Fig. 3.5 while some FS in 3D case are shown in Fig. 3.6 and Fig. 3.7.

Figure 3.5: Closed and open FS in two-dimensional case (examples).

The closed orbits can be both electron- and hole-like. Electron orbits are the ones
with the velocity v =∇pε(p) is directed “outside” the orbit, the hole ones have to velocity
directed “inside”. It easy to show that it is just the same definition as we have used
previously (see later). If the magnetic field is tilted with respect to the symmetry axes
both closed and open orbits can exist (see Fig. 3.8).

To study the motion in momentum space one can introduce the element

dp ≡
√

(dpx)2 + (dpy)2.

Taking squares of Eq. (3.46) for px and py and adding them we get

dp

dt
=
e

c
Hv⊥, or dt =

c

eH

dp

v⊥
.
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Figure 3.6: (a) 1st BZ for a fcc crystal (Al). (b) 2nd BZ for a fcc crystal. (c) The free
electron sphere for a trivalent fcc Bravais lattice. It completely encloses the 1st zone,
passing trough and beyond the 2nd zone into the third and (at the corners) ever slightly
into the fourth. (d) Portion of the free electron surface in the second zone when translated
into the 1st zone. The convex surface encloses holes. (e) portion of the free electron sphere
in the 3d zone when translated into the 1st zone. The surface encloses electrons.

If the orbit is closed we immediately get the expression for the period through the integral
along the orbit

T =
c

eH

∮
dp

v⊥
.

This period can be easily expressed in terms of the orbit’s area S

S(pz) =

[∫
dpx dpy

]
pz=const

.

To do this integral we can take 2 contours corresponding to ε and ε + dε, the width in
p-space in the normal direction being

dε |∂ε/∂p⊥|−1 = dε/v⊥. (3.47)

Thus

S =

∫
dε

∮
dp

v⊥
.
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Figure 3.7: Possible FS for a cubic metal. Lower panel: Left part - electron orbits, right
part - hole ones.
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Figure 3.8: Electron orbits for tilted magnetic field.

Finally, we get the following formula for the cyclotron frequency

ωc =
eH

cmc

, where mc(ε, pz) =
1

2π

[
∂S

∂ε

]
pz

is the cyclotron effective mass. For a free electron ε = (p2
z + p2

⊥)/2m0, and

S(pz) = πp2
⊥ = 2πm0ε− πp2

z, and mc = m0.

Thus, the cyclotron mass appears constant. The same holds for all the quasiparticles
with isotropic and quadratic spectrum ε(p). Returning to real space, one can rewrite the
equation of motion as

dp = −e
c

[dr×H] .

We see that the projection of the motion in the real space on the plane normal to H can
be obtained by the substitution

x→ cH

e
py, y → cH

e
px.

Also remains the motion along z-axis with the velocity vz = ∂ε/∂z.
Now we discuss one very useful trick to calculate the properties of electrons in a mag-

netic field. Namely, let us introduce the time of the motion along the orbit as

t1 =
c

eH

∫
dp

v⊥
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One should keep in mind that it is not the real time but some function of the point in the
p-space. We get

2

(2π~)3

∫
dpx dpy dpz =

2

(2π~)3

eH

c

∫
dpz dε dt1

Here we have used the relation (3.47). This trick will be extensively used later.

Cyclotron resonance.

Now we discuss one of the ways to measure the characteristics of electron spectra. Let us
assume that the electron with effective mass m moves in a weak a.c. electric field

E = E0 exp(−iωt), E0 ‖ x̂

and in a constant magnetic field H ‖ ẑ. We get

−iωmvx = −eEx − e
c
vyH,

−iωmvy = e
c
vxH.

To solve this set it is convenient to introduce the complex velocity v ≡ vx + ivy and get

i(ω − ωc)v = eEx.

We see that at ω → ωc the amplitude of velocity increases. It means that electron absorbs
the energy from the electric field. To get more adequate theory of the cyclotron resonance
one needs to take into account relaxation (we will come back to this problem later). The
cyclotron resonance is a very useful tool to determine the cyclotron effective mass.

3.7.2 Quantum Mechanics of Bloch Electron

An electron with isotropic quadratic spectrum

We start our considerations with the simplest case of where the periodic potential can be
taken into account by the effective mass approximation (we will denote is as m). We also
use the Landau gauge (3.45). To get the SE2 one can replace p in the classical Hamilton
function with the operator p̂ = −i~∇

− ~2

2m

[
∂2ψ

∂x2
+

(
∂

∂y
+
ieHx

c

)2

ψ +
∂2ψ

∂z2

]
= εψ. (3.48)

It is convenient to search the solution as

ψ(r) =ϕ(x)ei(kyy+kzz).

2We ignore for a while the electron spin.



64 CHAPTER 3. ELECTRONS IN A LATTICE.

Substituting this expression into (3.48) we get the equation for ϕ(x) (Check!)

− ~2

2m

∂2ϕ

∂x2
+

1

2
mω2

c (x− x0)2ϕ = ε1ϕ

where ωc is the cyclotron frequency,

x0 = −a2
Hky, aH =

√
c~
eH

, ε1 = ε− ~2k2
z

2m
.

The quantity aH is often called the magnetic length or Landau length. Finally we came
to the SE for a harmonic oscillator and we can write down both the energies and wave
functions:

ε1 = εN ≡ ~ωc(N + 1/2), (3.49)

the so-called Landau levels,

ϕ(x) =
1
√
aH

exp

[
−1

2

(
x− x0

aH

)2
]

HN

(
x− x0

aH

)
(3.50)

where HN is the Hermite polynomial. We see that the electron states in a magnetic field
could be specified by the set of quantum numbers α = N, ky, kz, the energy levels

εα = εN +
~2k2

z

2m
(3.51)

being dependent only on N, kz.
One can ask: why the co-ordinates x and y are not equivalent? The reason is that

the wave functions (3.50) correspond to the energy independent of ky. Consequently, any
function of the type ∑

ky

C(ky)ψN,ky ,kz

corresponds to the same energy and one can chose convenient linear combinations to get
correct asymptotic behavior.

General case.

The spectrum (3.51) has a very simple form for the case of any isotropic quadratic spectrum.
Nevertheless it is possible to obtain important results even in the case of very complicated
FS if we are interested in the Landau levels for large quantum numbers N. In this case one
can expect that one can use the Bohr-Sommerfeld quantization procedure. Indeed, in the
presence of magnetic field, as we have seen the kinematic momentum operator is

P = −i~∇+
e

c
A.
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Consequently,

Px = −i~∂/∂x, Py = −i~∂/∂y + (e/c)Hx,

the commutator being

[Px, Py] = iπ~
eH

c
.

One can see that the co-ordinate

Y = − c

eH
Px

is canonically conjugated to Py,

[Py, Y ] = i~.

Now we can directly apply the quantization rule∣∣∣∣∮ Py dY

∣∣∣∣ =
c

eH

∣∣∣∣∮ Py dPx

∣∣∣∣ =
cS

eH
= 2π~ [N + γ(N)] .

Here γ(N) is a slow function of N, 0 < γ < 1. It is easy to show that the distance
between the levels is just ~ωc. Indeed, neglecting γ(N)− γ(N − 1) we get

c

eH

∂S(ε)

∂ε
∆ε = 2π~.

3.8 Second Quantization of Bosons and Electrons

Now we briefly discuss the way to describe many-electron states by the occupation num-
bers. Such a procedure was introduced for phonons which are Bose particles and we first
generalize that procedure.

In general case, the total wave function of bosons is symmetric in replacement of the
particles. Thus it can be expressed as a symmetric product of individual wave functions

ΦN1N2... =

(
N1!N2! . . .

N !

)1/2∑
P

ϕp1(ξ1)ϕp2(ξ2) . . . ϕpN (ξN) , (3.52)

where pi label the states, ϕpi are while the sum is calculated over all the permutations of
{pi}. The coefficient is introduced to make the to total function normalized:∫

|Φ|2
∏
i

dξi = 1 .

The main idea is to consider ΦN1N2... as a function of the occupation numbers Ni. Assume
that we have an arbitrary one-particle symmetric operator

F (1) =
∑
a

f (1)
a (3.53)
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where f
(1)
a acts only upon the functions of ξa. In is clear that acting upon ΦN1N2... it changes

the state of only one particle. So it is reasonable to introduce the operators with matrix
elements

(bi)
Ni−1
Ni

=
√
Ni , (b†i )

Ni
Ni−1 =

[
(bi)

Ni−1
Ni

]∗
=
√
Ni (3.54)

It is just annihilation and creation operators introduced earlier. The operator (3.53) can
be expressed in terms of the creation-annihilation operators as

F (1) =
∑
ik

f
(1)
ik b

†
ibk (3.55)

where

f
(1)
ik =

∫
ϕ∗k(ξ1)f (1)(ξ1)ϕk(ξ) dξ1 . (3.56)

One can easily prove this relation comparing both diagonal and off-diagonal matrix ele-
ments of the operators. A 2-particle symmetric operator

F (2) =
∑
a,b

f
(2)
ab (3.57)

where f
(2)
ab acts upon the functions of the variables ξa and ξb can be expressed as

F (2) =
∑
iklm

f iklmb
†
ib
†
kblbm (3.58)

where

f iklm =

∫
ϕ∗i (ξ1)ϕ∗k(ξ2)f (2)(ξ1, ξ2)ϕl(ξ1)ϕm(ξ2) dξ1 dξ2 . (3.59)

Now we turn to the Fermi statistics to describe electrons. According to the Pauli
principle, the total wave function should be anti-symmetric over all the variables. So the
occupation numbers could be 0 or 1. In this case we get instead of (3.52)

ΦN1N2... =
1√
N !

∑
P

(−1)Pϕp1(ξ1)ϕp2(ξ2) . . . ϕpN (ξN) (3.60)

where all the numbers p1, p2, . . . , pN are different. The symbol (−1)P shows that odd and
even permutations enter the expression (3.60) with opposite signs (we take the sign ‘+’
for the term with p1 < p2 < . . . < pN). Note that the expression (3.60) can be expressed
as the determinant of the matrix with the elements Mik = (N !)−1/2ϕpi(ξk) which is often
called the Slater determinant.

The diagonal matrix elements of the operator F (1) are

F̄ (1) =
∑
i

f
(1)
ii Ni (3.61)

just as for the Bose particles. But off-diagonal elements are(
F (1)

)1i0k

0i1k
= ±f (1)

ik (3.62)
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where the sign is determined by the parity of the total number of particles in the states
between the i and k ones.3 Consequently, for Fermi particles it is convenient to introduce
the annihilation and creation operators as

(ai)
0
1 = (a†i )

1
0 = (−1)

∑i−1
l=1 Nl . (3.63)

We immediately get (Check!) the commutation rules for the Fermi operators:{
ai, a

†
k

}
≡ aia

†
k + a†iak = δik ,

{ai, ak} =
{
a†i , a

†
k

}
= 0 . (3.64)

The product of Fermi operators are

a†iai = Ni , aia
†
i = 1−Ni . (3.65)

One can express all the operators for Fermi particles exactly in the same way as the Bose
ones, Eqs. (3.55), (3.58).

3.9 Problems

3.1. Derive Eq. (3.15).
3.2. Prove the orthogonality of the Wannier functions.
3.3. Derive expression (3.16).
3.4. Derive expression (3.24).
3.5. Prove the identity (3.39).
3.6. Prove the formula (3.41).

3Note that for Bose particles similar matrix elements are
(
F (1)

)Ni,Nk−1

Ni−1,Nk
= f

(1)
ik

√
NiNk.
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Part II

Normal metals and semiconductors
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Chapter 4

Statistics and Thermodynamics of
Phonons and Electrons

In this Chapter we discuss thermodynamics of crystal lattice.

4.1 Specific Heat of Crystal Lattice

From the classical statistical physics, the average kinetic energy per degree of freedom is

εk =
1

2
kBT,

the total energy being

ε = εpot + εkin = 2εkin.

As a result, the total energy is

E = 3N0 · εkin = 3RT,

where R is the Rydberg constant while N0 is the Avogadro one. As a result, the specific
heat is

cV = 3R = 5.96 kal/K ·mole. (4.1)

This relation is violated at low temperatures as far as the temperature becomes less
than the so-called Debye temperature (which is for most of solids is within the interval 100-
400 K), namely it decreases with the temperature decrease. To understand this behavior
one should apply quantum mechanics.

Let us calculate the average electron energy from the point of view of quantum me-
chanics. We have seen that normal vibrations can be described as quasiparticles with the
energy

εN = ~ω(N + 1/2),

71
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where we have omitted the indices q and j which characterize a given oscillator. The
probability to find the oscillator in the state N is

wN =
e−εN/kBT∑
N e
−εN/kBT

.

The average energy is

ε =

∑
N εNe

−εN/kBT∑
N e
−εN/kBT

.

To demonstrate the way to calculate the average energy we introduce the partition function
as

Z =
∑
N=0

e−εN/kBT . (4.2)

We get
ε = −d lnZ/dβ, β = 1/kBT.

Form the definition (see Problem 4.1)

Z =
e−~ω/2kBT

1− e−~ω/kBT
.

Making use of this formula we get

ε =
~ω
2

+ ~ω N(ω), N(ω) =
1

e~ω/kBT − 1
(4.3)

where N(ω) is the Planck function. The first item is energy-independent while the second
one is just the average energy of bosons with zero chemical potential. In general the Bose
distribution has the form

1

exp
[
ε−ζ
kBT

]
− 1

where ζ is chemical potential which is equal to the derivative of the free energy:(
∂F
∂N

)
T,V

= ζ.

Usually the chemical potential is determined by the conservation of the particles’ number.
The number of phonons is not conserved: they can be created or annihilated in course of

interactions. Therefore their should be determined from the condition of equilibrium, i. e.
from the request of minimum of free energy. As a result, for phonons ζ = 0. The Planck
function determines the equilibrium number of phonons with a given frequency. Such a
picture allows one to consider the phonons as elementary excitations over the zero-point
vibration energy

E0 = (1/2)
∑
jq

~ωj(q).
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To get the total energy one should sum (4.3) over all the frequencies and vibration branches.
It is convenient to express this sum through the DOS according to the general definition

g(ω) =
∑
j,q

δ [ω − ωj(q)] . (4.4)

We get

E =

∫ ∞
0

g(ω)~ωN(ω) dω.

In the first approximation let us assume that the frequencies of the optical branches are
q-independent and equal to ωj0. Consequently, the summation is just the multiplication
by the Planck function N(ωj0). For acoustic modes we use the Debye model (see Section
2.2.4). Introducing the average sound velocity s0 as

1

s3
0

=
1

3

(
1

s3
l

+
2

s3
t

)
we get the following contribution of acoustic modes

Eac =
3V~

2π3s3
0

∫ ωD

0

dω
ω3

e~ω/kBT − 1

where the so-called Debye frequency is determined from the condition of the total number
of modes to be equal to 3N for all acoustic branches,

3N =

∫ ωD

0

g(ω) dω.

From this equation

ωD = s0

(
6π2

V0

)1/3

, qD =
ωD
s0

where V0 is the cell volume. The order-of-magnitude estimate for the maximal wave vector
qD is π/a. So according to the so-called Debye model all the values of q are confined in a
sphere with the radius qD. Usually, the Debye temperature is introduced as

Θ =
~ωD
kB

=
~s0

kB

(
6π2

V0

)1/3

.

The typical value of this temperature can be obtained from the rough estimate a = 10−8

cm, s0 = 105 cm/s. We get ωD = 1013 s−1, Θ = 100 K. It is conventional also to introduce
the temperatures corresponding to optical branches as

Θj =
~ωj0
kB

.
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These energies are of the order of 102 − 103 K. Finally, we get the following expression for
the internal energy

E = E0 +NkBT

[
3D
(

Θ

T

)
+

3s∑
j=4

Θj/T

eΘj/T − 1

]
(4.5)

where the Debye function D(z) is

D(z) =
3

z3

∫ z

0

x3 dx

ex − 1
. (4.6)

At high temperatures, T � Θj (and, consequently, T � Θ) we get z � 1 in Eq. (4.6) and
then expand the integrand in powers of x. We see that D(0) = 1. The item under the sum
sign in Eq (4.5) are equal to 1, and we get for the sum 3s − 3. consequently, we get the
classical expression

E = E0 + 3sNkBT

that leads to the classical expression (4.1) for the specific heat. At low temperatures we
immediately see that optical modes give exponentially small contributions and we can
discard them. At the same time, we can replace the upper limit of the integral in (4.6) by
infinity. Taking into account that ∫ ∞

0

x3 dx

ex − 1
=
π4

15

we get

E = E0 +
π2V(kBT )4

10~3s3
0

that leads to the following expression for the specific heat

cV =
12π4kB

5

(
T

Θ

)3

.

The Debye model is very good for low temperatures where only long wave acoustic modes
are excited. The acoustic contribution to the specific heat can be expressed through the
derivative of the Debye function. We have

cac
3kBN

= 3

(
T

Θ

)3 ∫ Θ/T

0

x4 dx

ex − 1
.

This function is shown in Fig. 4.1 One can see that really the border between the classical
and quantum region corresponds to T ≤ Θ/3 rather that to T ≤ Θ. The physical reason
is strong frequency dependence of phonon DOS. In real life, DOS behavior is much more
complicated because of the real band structure effects. The experimental DOS for NaCl is
shown in Fig. 4.2 (upper panel), the dash curve showing Debye approximation. Usually,
people still fit the results on specific heat by Debye approximation but assume that the
Debye temperature, Θ, is temperature dependent. The dependence Θ(T ) is shown in Fig.
4.2 (lower panel)
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Figure 4.1: Temperature dependence of acoustic contribution to the specific heat.

4.2 Statistics of Electrons in Solids

Now we turn to the electron system in thermodynamic equilibrium. As we have seen, the
electron state for a given energy band is characterized by the quantum number k, the
average number of electrons in this state being

f0(εk) =
1

exp
(
εk−ζ
kBT

)
+ 1

. (4.7)

The function (4.7) is called the Fermi-Dirac function. The chemical potential ζ is deter-
mined by the normalization condition

N =
∑
k

1

exp
(
εk−ζ
kBT

)
+ 1

. (4.8)

The summation here should be done also over spin indices. The equation (4.8) defines
the dependence of the chemical potential ζ on the electron density n = N/V . It is also
convenient to introduce the density of electron states with the formula similar to Eq. (4.4)

g(ε) = 2
∑
k

δ (ε− εk) (4.9)

where we have taken into account spin degeneracy. We get

n =

∫ ∞
0

g(ε)f0(ε) dε. (4.10)

For the quadratic spectrum with the effective mass m we have (see Problem 4.2)

g(ε) =

√
2

π2

m3/2

~3

√
ε . (4.11)
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Figure 4.2: DOS and effective Debye temperature for NaCl .

Inserting this formula to the normalization condition (4.10) and introducing the dimen-
sionless chemical potential ζ∗ = ζ/kBT we get the following equation for ζ∗

n =

√
2

π2

(mkBT )3/2

~3
F1/2(ζ∗)

where F1/2(z) is a particular case of the Fermi integrals

Fn(z) =

∫ ∞
0

xn dx

ex−z + 1
.

Degenerated Electron Gas

Now we discuss the important limiting cases. The first one is the case for good metals or
highly doped semiconductors in which the density of conduction electrons is large. The
large density of conduction electrons means that ζ∗ � 1. That leads to the following
approximate presentation for the Fermi function

f0(ε) = Θ(ζ − ε)

where

Θ(x) =

∣∣∣∣ 1, if x > 0,
0, if x < 0
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is the Heaviside unit step function. In this approximation we easily get

ζ0 =
~2k2

F

2m
=

~2

2m
(3π2n)2/3.

This quantity is often called the Fermi level because it is just the border between the full
and empty states. We will also use this word and denote it as εF . To get temperature
dependent corrections one should calculate the integral in Eq. (4.10) more carefully. One
obtains (see Problem 4.3)

ζ = εF

[
1− π2

12

(
kBT
εF

)2
]
.

Now we can check when our approximation is really good. To do it let us request that the
second item in the brackets to be small. We get

εF
kBT

=
~2(3π2n)2/3

2mkBT
� 1 . (4.12)

So we see that the gas is degenerate at big enough electron density and small effective
mass. Note that the criterion has the exponential character and inequality (4.12) can be
not too strong (usually 5-7 is enough). In a typical metal n ≈ 1022 cm−3, m ≈ 10−27 g,
and at room temperature εF

kBT
≈ 102.

Non-Degenerate Electron Gas

Now we discuss the situation when the electron density in the conduction band is not very
high and the electrons are non-degenerate. It means that ζ < 0, exp(−ζ∗) � 1. In this
case the Fermi distribution tends to the Maxwell-Boltzmann distribution

f0(ε) ≈ eζ
∗
e−ε/kBT

where

µ∗ = ln

[
4π3~3n

(2πmkBT )3/2

]
,

eζ
∗

=
4π3~3n

(2πmkBT )3/2
. (4.13)

We see that the chemical potential of non degenerate electron gas is strongly temperature
dependent. The degeneracy for room temperature is intermediate at n ≈ 1019 cm−3.

These formulas are not very interesting in typical semiconductors because electrons are
taken from impurities which can be partly ionized. So the dependence n vs. T remains
unknown. To get insight into the problem let us consider the band scheme of a typical
semiconductor with one donor level εD and one accepter one εA, Fig. 4.3 (the origin of
energies is the bottom of the conduction band). The most important feature is that in
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Figure 4.3: Band scheme of a typical semiconductor.

such situation we have both electrons (in the conduction band) and holes (in the valence
band). The occupation factor for holes is

f ′0(ε) = 1− f0(ε) =
1

e
ζ−ε
kBT + 1

.

It is natural to call the function f ′(ε) as the Fermi function of holes. According to our
prescription for energies, the electron energy in the conduction band is ε = ~2k2/2mn,
at the donor level ε = −εD, at the accepter level ε = −εA, while in the valence band
ε = −εG − ε′ where εG is the width of the forbidden gap while ε′ = ~2k

′2/2mp. If the also
introduce the hole chemical potential, ζ ′ = −εG − ζ we come to exactly the same form for
the hole Fermi function as for electrons with the replacement ε → ε′, ζ → ζ ′. To get the
position of the chemical potential now we should apply the neutrality condition

numberofelectrons = numberofholes

which reads∫
c.b.

gn(ε)f0(ε) dε+
∑
A

1

e
−εA−ζ
kBT

+1
=

∫
v.b.

gp(ε
′)f0(ε′) dε′ +

∑
D

1

e
εD+ζ

kBT
+1
.

This equation is strongly simplified if both electrons and holes obey the Boltzmann statis-
tics. Denoting A = exp(ζ∗)� 1 and assuming that exp(ζ∗ + εG/kBT )� 1 we get

νnA+
nA

1
A

exp
(
− εA
kBT

)
+ 1

= νpA
−1e
− εG
kBT +

nD

A exp
(

+ εD
kBT

)
+ 1

(4.14)

where we have introduced

νn,p =
(2πmn,pkBT )3/2

4π3~3
.

Even now we have a rather complicated situation which depends on the relation between
the energies and the temperature. In the following we analyze few most important cases.
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Intrinsic semiconductor

It is the simplest case where there is no both donors and accepters. From the Eq. (4.14)
we have

A =

(
mp

mn

)3/4

exp

(
− εG

2kBT

)
,

ζ = −εG
2

+
3

4
kBT ln

(
mp

mn

)
. (4.15)

We see that the chemical potential in an intrinsic semiconductor is close to the middle of
the forbidden gap. Concentrations of the electrons and holes are the same

ni = nT exp

(
− εG

2kBT

)
, nT =

√
νnνp.

The concentration nT for the room temperature and the free electron mass is 2.44 · 1019

cm−3, it scales as (mnmp)
3/4T 3/2.

Extrinsic semiconductor

Let us assume that only donors are present and εG � εD. In this case we get from Eq.
(4.14)

νnA
(
Ae

εD
kBT + 1

)
= nD.

At very low temperatures the first term is the most important one, and

A =

√
nD
νn
e
− εD

2kBT .

We see that the chemical potential is near the middle of the distance between the donor
level and the bottom of the conduction band, the concentration in the conduction band
being

nn ≈
nD
A
e
− εD
kBT =

√
νnnDe

− εD
2kBT .

At high temperatures we get

A =
nD
νn
, nn ≈ nD.

The result is clear enough: at high temperature all the donors are ionized while at low
temperatures electrons “freeze-out” into the donor states. The situation in accepter semi-
conductor is just the mirror one.
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4.3 Specific Heat of the Electron System

Now we calculate the specific heat of the electron sub-system. Just as in the case of
phonons, we have

E =

∫ ∞
0

εg(ε)f0(ε) dε . (4.16)

Making use of the Problem 4.3 we can write the integral in the universal form

I =

∫ ∞
0

χ(ε)f(ε) dε =

∫ ∞
0

ϕ(ε)

(
−∂f0

dε

)
dε (4.17)

with

ϕ(ε) =

∫ ε

0

χ(x) dx.

In our case,

ϕ(ε) =
(2m)3/2

5π2~3
ε5/2.

Then exactly as in the Problem 4.3 we obtain

E =
(2m)3/2

5π2~3
ζ5/2

[
1− 5π2

8

(
kBT

εF

)2
]
.

According to the same problem, the chemical potential ζ is also temperature-dependent,
and

ζ5/2 = ε
5/2
F

[
1− 5π2

24

(
kBT

εF

)2
]
.

Making use of this equation, we get the final result

E =
(2m)3/2

5π2~3
ε

5/2
F

[
1 +

5π2

12

(
kBT

εF

)2
]
.

Finally, we get

cV =

√
2

3

m3/2

~3

√
εFk

2
BT. (4.18)

We see that cV ∝ T , it goes to zero at T → 0 (the Nernst theorem). The physical meaning
of Eq. (4.18) is very simple - only the electrons in the narrow layer kBT could be excited;
their number being g(εF )kBT while the contribution of each one to the specific heat being
kB.

It is interesting to compare electron and phonon contributions to specific heat. At room
temperature and εF ≈ 1 eV we get that the electron contribution is only few percents in
comparison with the phonon one. But it is not the case at low temperatures where the
phonon contribution goes like T 3 while the electron one is ∝ T .

For the Boltzmann statistics one can substitute the Boltzmann distribution function
into Eq.(4.16). The result is (see Problem 4.4)

cV = (3/2)nkB.
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4.4 Magnetic Properties of Electron Gas.

Now we will discuss the basic magnetic properties of electron gas. We start from the
recalling of the main thermodynamic relations for magnetics.

Basic thermodynamic relations.

In a magnetic field H a sample acquires the magnetic moment M. For a volume dV one
can introduce magnetization

dM = M(H) dV.

The derivative

χ =

(
dM

dH

)
H=0

is called magnetic susceptibility. It is a dimensionless quantity. According to the thermo-
dynamics, the change of the internal energy is

dE = dQ+ dA

where dQ = T dS is the transferred heat (S is the entropy) while dA is the work with the
system, dA = −M dH. Finally

dE = T dS −M dH.

Consequently, for the free energy F = E − TS we get

dF = −S dT −M dH,

and

S = −
(
∂F
∂T

)
H

, M = −
(
∂F
∂H

)
T

, χ = −
(
∂2F
∂H2

)
T ;H=0

.

So, the main quantity is the free energy.

Magnetic susceptibility of a molecular system.

Classical theory.

Now suppose that the gas consists of the molecules with magnetic momenta lA (we re-
produce the Langevin theory of a paramagnet gas). As it is known, the average magnetic
moment in this model is

〈l〉 = lAL
(
lAH

kBT

)
, L(x) = coth(x)− 1

x
(4.19)

is the Langevin function (see Problem 4.4). At low fields or at high temperatures one can
expand this function as L(x) ≈ x/3 and get

M = n〈l〉 = χH, χ =
l2An

3kBT
.

Note that we have reproduced the Curie law χ ∝ 1/T , which is pure classical.
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Quantum theory.

According to the quantum mechanics, the angles between the magnetic moment and the
magnetic field can take only discrete values. To take into account quantum effects one
should recall that for an electron in the atomic stationary state the orbital momentum
projection is Lz = ~l where l is the magnetic quantum number, the magnetic momentum
being Mz = µBl where

µB =
e~

2mc
= 0.927 · 10−20 erg/Oe

is the Bohr magneton. A free electron also posses the spin momentum sz = ±~/2 and
magnetic momentum µB ( note that the ratio Mz/Lz for a free electron is twice greater
than for the orbital motion).

To get the total momentum, one should sum the orbital and spin momenta in a vector
form. As a result, the magnetic moment is not parallel to the mechanical one. We do not
come here deeply into quantum mechanics of a spin. Let us just mention that the result
is that there is a quantum number j for a total mechanical momentum which is equal to
~
√
j(j + 1), the magnetic momentum being

µj = µBgLj, gL = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
.

Here gL is the so-called Lande factor, l is the orbital quantum number (the total orbital
moment being ~

√
l(l + 1)), while s = ±1/2 is the spin quantum number. As a result,

there are 2j + 1 discrete orientations with the angles ϑm determined by the condition
cosϑm = m/j where magnetic quantum number m takes the values j, j−1, . . . , −j+1, −j.
The energy in magnetic field is determined as

−µjH cosϑm = −µBHgLm

The average magnetic moment could be calculated just as in the Problem 4.4 with the only
difference that we have discrete sums instead of integrals

〈µ〉 = µBgL
∂

∂α

[
ln

(
j∑

m=−j

eαm

)]
(4.20)

where α = µBgLH/kBT. In weak field α� 1, and

χ =
µ2
effn

3kBT
, µeff = µBgL

√
j(j + 1). (4.21)

Paramagnetism of Free Electrons (Pauli Paramagnetism).

Now we are prepared to discuss the magnetic susceptibility of a gas of near free electrons.
In this case the orbital moment l = 0, j = s = 1/2 and gL = 2. Consequently one could
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expect quite big magnetic susceptibility according to Eq. (4.21). This statement strongly
contradicts with the experiment - in fact the susceptibility is small. This very important
problem was solved by Pauli in 1927 and it was just the beginning of quantum theory of
metals. The key idea is that the electrons have Fermi statistics and one should calculate
the average in Eq. (4.20) taking into account the Pauli principle.

To make such a calculation let us recall that the electron energy in a magnetic field
depends on the momentum orientation

ε± = ε∓ µBH.

Consequently

M = M+ −M− =
µB
2

∫
[f0(ε+)− f0(ε−)] g(ε) dε.

(the factor 1/2 is due to the fact that we have introduced the DOS g(ε) including spin
factor 2). For small magnetic fields we can expand the square brackets and get

χ = µ2
B

∫ (
−∂f0(ε)

∂ε

)
g(ε) dε.

To get the final formula one should take into account that∫ (
−∂f0(ε)

∂ε

)
g(ε) dε =

∂n

∂ζ
,

i. e. the derivative of electron concentration with respect to the chemical potential. This
quantity is often called the thermodynamic density of states. So we get

χ = µ2
B

∂n

∂ζ
.

Now the magnetic susceptibility can be calculated for any limiting case. For example, the
temperature-dependent part for a strongly degenerate gas (see Problem 4.5)

χ = µ2
Bg(εF )

[
1− π2

12

(
kBT

εF

)2
]
. (4.22)

We see very important features: at low temperatures the main part of magnetic suscepti-
bility is temperature-independent. Comparing the free electron susceptibility (4.22) with
the Langevin one (4.21) we see that for electrons the role of characteristic energy plays the
Fermi energy εF . For the Boltzmann gas we return to the formula (4.21).

Paramagnet Resonance (Electron Spin Resonance)

We take the opportunity to discuss here a very important tool of the modern solid state
physics to investigate the properties of both the conduction electrons and the electrons
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belonging to impurity centers. As we have seen, in an atomic electron the level’s splitting
in the magnetic field is proportional to the Lande factor gL. In a solid state electron there
is also spin-orbital interaction, as well as the interaction with the lattice. So one could
introduce instead of the Lande factor the so-called spectroscopic factor gs which effectively
describes the level’s splitting. This factor is often called simply g-factor. In general case
gs 6= 2, it can be anisotropic and also depend on the magnetic field direction.

Under the external magnetic field the levels split. In simplest case, the electron level
splits into doublet corresponding to s = ±1, in general case the splitting-can be much
more complicated. It is important that in any case the selection rule for a dipole magnetic
transitions ∆m = ±1. So one can study resonant absorption of electromagnetic field in
the sample obeying the condition

~ω = gsµBH .

Consequently, one can determine the behavior of g-factor which is a very instructive quan-
tity. The position and width of the resonant peaks allows one to make many conclusions on
the symmetry of the local field in a crystal, interaction with neighboring magnetic atoms
and with the lattice vibrations, etc.

The very similar picture hold for atomic nuclei in a crystal, the corresponding approach
is called the nuclear magnetic resonance (NMR).

Phenomenological theory of EPR.

Here we show a very simple theory of EPR (Bloch, 1946). If M is the magnetization vector
and L is the mechanical momentum of a volume unit, we have the following equation of
motion

dL

dt
= [M×H]

(just the sum of equations for different particles). According to very general concepts of
quantum mechanics

M =γL, γ =
egs
2mc

.

So we get the close vector equation for M

dM

dt
= γ [M×H] . (4.23)

To get explicit results let us assume that

H = H0 + H1 exp(−iωt), H0 ‖ z, H1 ‖ x.

The solution can be expressed in the form

M = M0 + M1 exp(−iωt), M0 ‖ z.

We get instead of Eq. (4.23)

−iωMx = γM1yH0

−iωMy = γ(MzH1x −MxH0) ≈ γ(M0zH1x −MxH0)
−iωM1z = −γM1yH1x ≈ 0

(4.24)
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where we keep only linear in the field H1 terms. Solving this equation we get

χx =
Mx

Hx

=
χ0

1− (ω/ω0)2

where

χ0 =
M0z

Hz

, ω0 = γH0.

We see that at ω → ω0 χx →∞ (note that the relaxation is neglected).

Diamagnetism of Atoms and Electrons (Landau Diamagnetism).

Now we are going to show that there is also diamagnetic contribution to the magnetic
response which is usually masked by more strong paramagnetism.

Gas of atoms.

Let us start from an isolated atom with Z electrons which is place in a magnetic field
H ‖ z. According to the Larmor theorem the influence of magnetic field is the rotation
around z-axis with the Larmor frequency

ωL = eH/2mc .

The corresponding magnetic moment is −µH. Consequently, if we introduce the mechan-
ical momentum l we come to a universal relation

µ =
e

2mc
l .

Taking into account that

l = mωL

Z∑
i=1

(x2
i + y2

i )

we come to the following expression for diamagnetic susceptibility

χd =
nµ

H
=

e2n

4mc2

Z∑
i=1

(x2
i + y2

i ).

The order of magnitude estimate for
∑Z

i=1 (x2
i + y2

i ) is Za2. If we compare this result with
the Langevin paramagnetic response µ2

Bn/kBT we get

χd
χp
≈ Z

k0T

e2/a
.

Usually this ration is 10−2 at room temperature.
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Free electrons. Classical theory.

One can imagine that such a description holds for electrons. Indeed, a free electron’s orbit
moves along a circle in the plane normal to H, the radius being

rc =
mcv⊥
eH

=
v⊥
ωc

(4.25)

where

ωc =
eH

mc
(4.26)

is the cyclotron frequency. Note that ωc = 2ωL, where the Larmor frequency ωL was
introduced earlier. The corresponding magnetic moment is

µ =
ercv⊥

2c
=
mv2
⊥/2

H
.

Making use of the classical statistics, namely assuming mv2
⊥/2 = kBT , we get

χ = n
kBT

H2
.

It is clear that we have got a wrong equation, because it is charge-independent. It is
interesting that the wrong result is due to the assumption that all the electrons have
circular orbits. It appears that surface orbits which are not circles contribute to the surface
current. So we will be more careful and show that according to classical physics one should
get zero susceptibility for free electrons.

Let us introduce the vector-potential A(r) of the magnetic field as

H =curlA .

For H ‖ z we have A ‖ y, Ay = xH. The classical Hamilton function is

H =
1

2m

(
p+

e

c
A
)2

+ U(r) (4.27)

where U(r) is the potential energy (remember that we denote the electron charge as −e).
The partition function is

Z =

[∫
(dp)

∫
V
(dr) exp

(
− H
kBT

)]N
(4.28)

where N is the total number of particles. The free energy is, as usual,

F = −kBT lnZ .

One can shift the integration variables p in Eq. (4.28) by (e/c)A(r), the shift being p-
independent. We come to the conclusion that the partition function is field-independent
and χ = 0.
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Electron gas. Quantum theory. Quantum mechanics changes the situation com-
pletely. To understand the result let us apply a uniform magnetic field and assume that
we have taken into account the periodic potential by the effective mass approximation. As
was shown, the electron states in a magnetic field could be specified by the set of quantum
numbers α = N, ky, kz, the energy levels

εα = εN +
~2k2

z

2m
= ~ωc(N + 1/2) +

~2k2
z

2m
(4.29)

being dependent only on N, kz.
To obtain thermodynamic functions one should calculate the density of states in a

magnetic field. First we should count the number of the values ky corresponding to the
energy εα (the so-called degeneracy factor). As usual, we apply cyclic boundary conditions
along y and z -axes and get

ky =
2π

Ly
ny, kz =

2π

Lz
nz.

At the same time, we assume that the solution exists only in the region

0 < |x0| < Lx.

So, the degeneracy factor is

Ly
2π
kmax
y =

Ly
2πa2

H

xmax
0 =

LyLx
2πa2

H

. (4.30)

This is very important relation which shows that one can imagine Landau states as cells
with the area a2

H . We will come back to this property later.
Now it is easy to calculate density of states treating the kz variable as for the usual 1D

motion
2|kz|Lz

2π
=

2
√

2mLz
2π~

√
ε− ~ωc(N + 1/2)

for each state with a given N. Finally, the total number of states for a given spin is

Zs(ε) =
∑
N

ZsN(ε) =
2
√

2m

(2π)2~a2
H

∑
N

√
ε− ~ωc(N + 1/2)

where one has to sum over all the values of N with non-negative ε−~ωc(N+1/2). The total
number of sates is Z(ε) = 2Zs(ε). To get DOS one should to differentiate this equation
with respect to ε. the result is

gs(ε) =
dZ(ε)

dε
=

√
2m

(2π)2~a2
H

∑
N

1√
ε− ~ωc(N + 1/2)

.

To take the spin into account one should add the spin splitting

±µBgsH
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to the energy levels (4.29). If we ignore the spin splitting we can assume spin degeneracy
and multiply all the formulas by the factor 2. We take it into account automatically using
g(ε) = 2gs(ε).

The behavior of the density of states could be interpreted qualitatively in the following
way. The Landay levels as functions of magnetic field for a given value of pz are shown
in Fig. 4.4. They form the so-called Landau fan. The Fermi level is also shown. At low

Figure 4.4: Landau levels as functions of H.

magnetic fields its dependence on magnetic field is very weak. We see that if magnetic field
is small many levels are filled. Let us start with some value of magnetic field and follow
the upper filled level N . As the field increases, the slopes of the ”fan” also increase and at
a given treshold value HN for which

εN(HN) = εF .

As the field increases the electrons are transferred from the N -th Landau level to the other
ones. Then, for the field HN−1 determined from the equation εN−1(HN−1) = εF the (N−1)
becomes empty. We get

HN ≈
mccεF
e~

1

N
, so∆

(
1

H

)
≈ e~
mccεF

.

We see that electron numbers at given levels oscillate with magnetic field and one can expect
the oscillating behavior of all the thermodynamic functions. To illustrate the oscillations
the functions

Z̃(x) =
∑
N

√
x−N − 1

2

as well as the difference between its classical limit (2/3)x3/2 are plotted in Fig. 4.5.
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Figure 4.5: Number of filled states as a function of the energy.

Quantitative theory of magnetic susceptibility.

Now we are prepared to calculate the magnetic susceptibility. Using the known formula
for the entropy of the Fermi gas we get the following expression for the free energy

F = nζ − kBT
∫ ∞
ε0

ln
[
1 + e

ζ−ε
kBT

]
g(ε) dε = nζ −

∫ ∞
ε0

f0(ε)Z(ε) dε .

Here ε0 = ~ωc/2 and we have integrated by parts. Making the second integration by part
we get

F = nζ −
∫ ∞
ε0

(
−∂f0

∂ε

)
Φ(ε) dε (4.31)

where

Φ(ε) =
∑
N

∫ ε

εN

ZN(ε) dε .
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The behavior of the function Φ(ε) depends on the number of level which are present in the
summation over N. One can derive the auxiliary formula (see Appendix B)

K(x) =
∑

N(x− n− 1/2)3/2 = 2
5
x5/2 − 1

16
x1/2−

− 3
8π2

∑∞
l=1

[
sin(2πlx)S

(√
4lx
)

+ cos(2πlx)C
(√

4lx
)] .

As a result the function Φ in (4.31) is

Φ(ε) = AK

(
ε

~ωc

)
, A =

(2m)3/2(~ωc)5/2

3π2~3
.

At strong degeneracy (
−∂f0

∂ε

)
≈ δ(ε− εF )

and we see that the free energy oscillates in magnetic field, the period of the l-th item
being ~ωc/l. At the same time, at

kBT � ~ωc
the oscillations are smeared, and

F = nεF − A

[
2

5

(
εF
~ωc

)5/2

− 1

16

(
εF
~ωc

)1/2
]
.

The second item is field-independent, and we get

χ = −∂
2F
∂H2

= −1

3

√
2

π2

(m0

m

)2 m3/2µ2
BεF

~3
.

One can easily show that the ratio of this diamagnetic susceptibility to the Pauli param-
agnetic one is

1

3

(m0

m

)2

.

This ratio can be large in semiconductors.
In the opposite limiting case,

kBT ≤ ~ωc
the oscillations of the free energy and of the susceptibility are pronounced. It is the so-
called de Haas-van Alphen oscillations which were first observed in Bi (1930). It is very
important effect to determine the characteristics of the Fermi surface of metals. A typical
shape of these oscillations is shown in Fig. 4.6. In a non-degenerate gas we have the
Boltzmann distribution instead of the Fermi one and we get (Check!)

F = nζ − A~ωc
kBT

eζ
∗
∞∑
N=0

(
ε

~ωc
−N − 1

2

)3/2

e−ε/kBT . (4.32)
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Figure 4.6: De Haas-van Alphen oscillations.

Then we easily get (Problem 4.6)

F = nζ − 3
√
π

4
A

(
kBT

~ωc

)5/2

eζ
∗
[

2zez

1− e−2z

]
(4.33)

where z = ~ωc/2kBT. The only magnetic field dependence is due to the last factor. At low
magnetic fields we can expand the expression in square brackets as 1−z2/6. Differentiating
with respect to magnetic field we get

χ = −1

3

(m0

m

)2 µBn

kBT
.

So we come to the conclusion that the relation between the diamagnetic and paramagnetic
parts holds also for non degenerate gas.

4.5 Problems

4.1. Calculate the partition function for a harmonic oscillator.
4.2. Prove the expression (4.11).
4.3. Calculate temperature-dependent corrections to the chemical potential of a Fermi
gas.
4.4. Calculate specific heat for the Boltzmann gas.
4.5. Derive expression (4.22) for magnetic susceptibility.
4.6. Derive the formula (4.33) for magnetic susceptibility of Boltzmann gas.
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Chapter 5

Summary of basic concepts

In this very short chapter we discuss main concepts of the first, introductory part of the
course and try to understand their range of applicability.

1. The first concept was translation symmetry of crystalline materials. This concept
allowed us to classify the structure of crystals and to formulate the basic theory of lattice
vibrations. It was shown that under harmonic approximation one can introduce normal
co-ordinates of lattice displacements which are independent. In fact, because of translation
symmetry, these displacements propagate as plane waves which are characterized by the
wave vector q and frequency ω(q). The dispersion law ω(q) is periodic in q-space, the
period being the reciprocal lattice vector G which can be constructed from the basis bi
as G =

∑
i nibi where ni are integers. Consequently, one can chose a basic volume in

the reciprocal lattice space (the Brillouin zone, BZ). The properties of the dispersion law
ω(q) are determined by the crystal structure, in particular, by the number s of atoms in a
primitive cell. There are 3 acoustic branches and 3s− 3 optical ones.

It is clear that the exact periodicity is not the case in real life because i) all the samples
are finite, and ii) many important systems are inhomogeneous. Consequently, this approach
do not take into account surface states, interface states. Moreover, the imperfections of
the crystal lattice (defects, impurities) lead to violation of the translation symmetry and,
as a result, to scattering of the waves. As a result, if the degree of disorder is large, all the
picture developed above needs important corrections. In particular, some localized modes
can appear which are completely beyond the scope of Part 1.

2. The properties of the lattice waves allowed us to introduce the central concept of
solid state physics - the concept of quasiparticles. Namely, the lattice vibrations can
be described as a set of quasiparticles (phonons) with quasimomentum ~q and energy
~ωj(q). They can be treated as the Bose particles with zero chemical potential, the only
(but very important) difference being that (as we will see later) in all the interaction
processes quasimomenta q are conserved with the accuracy of G.

Remember, that all the formulation is base on the harmonic approximation. The lattice
anharmonicity leads to the interaction between quasiparticles. This interaction together
with the scattering by defects lead to the dumping of quasiparticles. It means that a
quasiparticle is not exact eigenvalue of the total Hamiltonian of the system and the quasi-

93
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momentum ~q is not exact quantum number. Physically, the quasiparticles have finite
mean free path ` that is the characteristic distance of the wave function dumping due to all
the interactions. The length ` is very important property for all the transport phenomena.
One can understand that the concept of quasiparticles can be valid only if

qph �
1

`ph
.

Another formulation of this inequality is that the wave length 2π/q should be much less
than the mean free path `. Indeed, quantum system should have enough space to form a
stationary state. In most situation this condition holds because the anharmonicity is rather
weak (we will estimate it later). Nevertheless, there are some important situations where
phonons could not be considered as independent quasiparticles. In particular, phonons
can interact with electrons. In some situations this interaction appears strong enough to
form bound states -polarons. It is clear that in such a situation the concept of independent
weakly interacting phonons fails.

3.The translation symmetry influences strongly upon the electron system. As we have
seen, the concept of Bloch electrons can be developed. The main advantage is that the
periodic potential created by the lattice and other electrons in the first approximation leads
only to the renormalization of the electron spectrum from p2/2m0 to more complicated
function ε(p) which is periodic in p-space

ε(p + G) =ε(p).

Again, we come to next to independent quasiparticles with the quasimomentum( k = p/~confined
in the BZ. As in the case of phonons, electrons have several energy bands, εj(p).

The most important for applications feature is that one can treat the function

H(p, r) =εj

(
p+

e

c
A(r)

)
+ U(r)−eϕ(r)

as the Hamiltonian to describe the motion of a Bloch electron in external fields. This is very
important statement because it allows one to analyze the electron motion in external fields.
Its range of applicability is limited mainly by one-band approximation - it is implicitly
assumed that interband transitions do not take place due to external fields. In particular
this approach fails if the frequency ω of external field is close to the |εi(p)−εj(p)| for a
given p. One can see that one cannot use the simplified effective mass approach for the case
of degenerate bands in semiconductors (one should bear in mind that there are some special
methods to treat this case, we will discuss some of them later). Another criterion is that the
typical spatial scale of motion, L, should be greater than the lattice constant a. Indeed, the
Bloch state is formed at the distances much greater than a, and external fields should not
interfere with the formation of the electron state. The latter criterion is, in fact, dependent
of the problem under consideration. Suppose that we are interested in the formation of a
bound state Bloch electron+impurity with Coulomb potential. It is the typical problem of



95

semiconductor physics. Substituting the Hamiltonian p̂2/2m + eϕ = p̂2/2m − e2/εr with
the effective mass m to the SE we get the effective Bohr radius

aB =
~2ε

me2
= a0

B

m0

m
ε = 0.53

m0

m
ε, Å.

In this case the criterion for one-band approximation is aB � a. This criterion can be mat
only in materials with small effective mass and large dielectric constant ε. For the so-called
deep levels. as well as for some interface states this approach is not valid.

The electron states as the phonon ones can be destroyed by the impurity scattering, as
well as by electron-phonon and electron-electron interaction. Form the first glance, electron
should interact with each other via very strong Coulomb forces and it is impossible for them
to be near independent. Nevertheless, i) the total system is electrically neutral, and ii)
electrons effectively screen electric fields. As a result, Coulomb interaction appears mostly
included in the self-consistent potential and the remaining effects can be not important
for many actual problems. We will come back to the electron-electron interaction in the
following parts.

At the same time, there are important physical situations where the interaction play
crucial role and change the ground state of the system. One example is the formation of
the polaron (electron+phonon) states, another one is the formation of a superconductor
states. The properties of superconductors will be discussed in a special Part.

Up to now, we have described the electron states as stationary solutions ψ = eikruk(r)
of the SE. To describe the transport it is useful to form a package of the electrons with the
quasimomenta p, p+∆p. According to the uncertainty principle,

∆p∆r ≈ ~.

Now, if we want to localize the quasiparticle, the uncertainty ∆r should be, at least, less
than the mean free path `. The upper limit for ∆p is p. So, we come to the criterion

p� ~
`
.

For a typical metal p ≈ ~/a, and we get `� a. There is another important criterion which
is connected with the life-time τϕ with the respect of the phase destruction of the wave
function. The energy difference ∆ε which can be resolved cannot be greater than ~/τϕ. In
the most cases ∆ε ≈ kBT , and we have

kBT �
~
τϕ
.

Note that elastic scattering does not contribute to the phase destruction.
The previous part of the course has outlined the physics of independent quasiparticles

which are very often called the elementary excitations.
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Chapter 6

Classical dc Transport in Electron
and Phonon Systems

In this chapter we discuss transport properties of bulk normal conductors and insulators.

6.1 The Boltzmann Equation for Electrons

General Form

The description of quasiparticles as wave packages allows one to introduce the non-equilibrium
distribution function f(p, r) which is the average occupation number for the state p at the
point r. In the absense of external fields and interactions this function is equal to the
equilibrium one, f0. Otherwise it becomes time dependent, and one can write

df

dt
= I(f)

where I(f) ≡ (∂f/∂t)coll is called the collision integral. One can write the l.h.s. as

∂f

∂t
+
∂f

∂r

∂r

∂t
+
∂f

∂p

∂p

∂t
.

Using the Newton equation we can write the previous formula as

∂f

∂t
+ v

∂f

∂r
− e

(
E+

1

c
[v ×H]

)
∂f

∂p
.

The collision integral describes transitions between the states with different p due to col-
lisions. It can be specified if one knows the collision probability W (p,p′). Indeed, the
change of the distribution induced by the collisions is

decrease: −
∑
p′

W (p,p′)f(p) [1− f(p′)]→ “out” term,

97
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increase:
∑
p′

W (p′,p)f(p′) [1− f(p)]→ “in” term.

The first term describes the scattering processes in which the electron leaves the state p
while the second one describes the processes where an electron comes to the state p from
other states p′. The factors [1− f(p)] takes account of the Pauli principle. So

I(f) =
∑
p′

{W (p′,p)f(p′) [1− f(p)]−W (p,p′)f(p) [1− f(p′)]} . (6.1)

Finally, we get the Boltzmann equation for electrons

∂f

∂t
+ v

∂f

∂r
− e

(
E +

1

c
[v ×H]

)
∂f

∂p
= I(f) . (6.2)

Let us investigate general properties of the collision integral. It is clear that if the
system is in equilibrium the collision integral should vanish, I(f0) ≡ 0. Making use of the
relation

1− f0(ε) = f0(ε) exp

(
ε− ζ
kBT

)
we get the general property

W (p′,p) exp

(
ε

kBT

)
= W (p,p′) exp

(
ε′

kBT

)
where ε = ε(p), ε′ = ε(p′). For any elastic scattering

W (p′,p) = W (p,p′)

and we get

I(f) =
∑
p′

W (p,p′) [f(p′)− f(p)] . (6.3)

We see that the Pauli principle is not important for elastic collisions because it is met
automatically. Now we will discuss one important collision mechanism to show the main
properties of the transport, namely, the impurity scattering. This mechanism is important
at low temperatures and in rather dirty materials.

Impurity scattering

Under the Born approximation, the scattering probability for impurities is

W (p,p′) =
2π

~
|Vpp′|2 δ [ε(p)− ε(p′)] (6.4)

where Vpp′ is the matrix elements of the impurity potential

V (r) =
∑
i

v(r−Ri) (6.5)
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which is the sum of the potentials v of the individual impurities between the Bloch states

1√
V
eikruk(r), k ≡ p

~
.

Substituting (6.5) into the expression for matrix elements we get

Vpp′ = V−1
∑
i

∫
v(r− ri) e

i(k−k′)ru∗k′(r)uk(r) d3r

= V−1
∑
i

ei(k−k
′)Ri

∫
v(r)u∗k′(r)uk(r) ei(k−k

′)rd3r

= V−1
∑
i

ei(k−k
′)Rivp′p .

Here we have assumed all the impurity atoms be of the same kind and their positions in
the primitive cells are equivalent. So we have shifted the origin of the frame of reference for
each cell by an appropriate lattice vector. Now we can calculate the scattering probability
(6.4). We get

2π

~
1

V2

∫
V(dp′) |vp′p|2 δ [ε(p)− ε(p′)]

∑
i,k

ei(k−k
′)(Ri−Rk)

where we replaced the summation over the discrete quasimomenta by the integration∑
p′

→ V
∫

(dp′) ≡ 2V
(2π~)3

∫
d3p′ .

The last sum can be strongly simplified because the positions of the impurities are random
the distance between them is much greater than interatomic spacing a. So we can average
over their positions and the only terms important are the ones with i = k (the other
oscillate strongly, their contribution being very small). As a result,∑

i,k

ei(k−k′)(Ri−Rk) = Nimp

where Nimp is the number of impurities. Finally, we get the following collision integral

I(f) =
2π

~
ni

∫
(dp′) |vp′p|2 δ [ε(p)− ε(p′)]

[
f(p

′
)− f(p)

]
(6.6)

where we introduced the impurity concentration as ni = Nimp/V .
Now we change the variables from p′ to the energy ε′ and the surface S ′ defined as

ε(p′) = ε′. We get

2

(2π~)3
d3p′ =

2

(2π~)3
dS ′ dp′⊥ =

2

(2π~)3
dS ′

dε′

|∂ε′/∂p′|
= dε′ (ds′ε′)



100 CHAPTER 6. CLASSICAL DC TRANSPORT ...

where we have denoted

(dsε) ≡
2

(2π~)3

dS

v
.

Note that the densoty of states is given by the expression

g(ε) =

∫
Sε

(dsε)

where the integral is calculated over the surface of constant energy ε(p). Using the above
mentioned notations we can than apply the δ-function to integrate over the ε′. The result
has a simple form

I(f) =
2π

~
ni

∫
Sε′

(dsε′)
∣∣vp′p∣∣2 [f(p

′
)− f(p)

]
. (6.7)

The Transport Relaxation Time

Now we demonstrate a very useful representation of the collision integral that makes the
solution of the Boltzmann equation rather simple. Let us assume that the deviation from
equilibrium is small, so that

f = f0 + f1, |f1| � f0.

Because I(f0) = 0 we have I(f) = I(f1). To get explicit results we assume that the
spectrum ε(p) is isotropic. Consequently p = p′, vp,p′ depends only on the angle between
p and p′, the surface S is a sphere and the integration is in fact performed over the solid
angle.

It is convenient to write the function f1 as

f1 = −n · f(ε), n ≡ p/p (6.8)

is the unit vector directed along p. In this case

I(f) = f(ε)

∫
dΩ′

4π
W (θ)

(
cos(p̂′, f)− cos(p̂, f)

)
where Ω′ is the solid angle in the p′-space, θ ≡ p̂,p′ is the angle between p and p′, while
(Check!)

W (θ) = π
ni|v(θ)|2

~
g(ε) . (6.9)

Then we can transform the integral as follows. Chose the polar axis z along the vector p.
Now let us rewrite the equation

p′ · f = p′zfz + p′⊥ · f⊥
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as

cos(p̂, f) = cos(p̂′,p) cos(f̂ ,p) + sin(p̂′,p) sin(f̂ ,p) cosϕp′⊥,f⊥
. (6.10)

Here ϕp′⊥,f⊥
is the angle between the projections of p′ and f to the plane normal to p. Note

that the angle p̂,p′ = θ. The second term in (6.10) vanishes after integration over ϕ
p′⊥,f⊥

.

Finally we get

I(f) = − f1

τtr

= −f − f0

τtr

where
1

τtr

=
1

2

∫ π

0

W (θ) (1− cos θ) sin θ dθ . (6.11)

The quantity τtr is called the transport relaxation time. In many situations the Boltzmann
equation is represented in the form

∂f

∂t
+ v

∂f

∂r
− e

(
E +

1

c
[v ×H]

)
∂f

∂p
= (6.12)

Here we have shown that this form is exact for elastic impurity scattering if the non-
equilibrium function can be expressed as (6.8). One should remember that we have made
several important simplifications:

• Isotropic spectrum;

• Elastic scattering;

• The form (6.8) for the non-equilibrium distribution function.

All these assumptions are important and in some cases they can be wrong. Nevertheless
the form (6.12) allows one to get good order-of-magnitude estimates and we will extensively
use it.

6.2 Conductivity and Thermoelectric Phenomena.

DC Electric Conductivity

Let us apply the outlined approach to calculate the conductivity of a conductor. Namely, let
us assume that a weak stationary electric field E is applied to the sample. The Boltzmann
equation has the form

− e
(

E · ∂f
∂p

)
= −f − f0

τtr

. (6.13)

Because the field is weak we can assume that

f = f0 + f1 , f1 ∝ E , |f1| � f0
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and we can replace f → f0 in the l.h.s. and get e(E · v) (−∂f0/∂ε). Immediately we get

f1 = e(E · v) τtr(∂f0/∂ε) .

We see that it has just the form of (6.8) that justifies our approach. Now we calculate the
current as

j = −e
∫

(dp) vf1 = e2

∫
(dp) τtr v(E · v)

(
−∂f0

∂ε

)
(6.14)

(the function f0 is even in p and does not contribute to the current). Again, we can average
over the surface of a constant energy as∫

M(p)(dp) =

∫
dε

∫
Sε

M(p) (dsε) =

∫
dε g(ε)〈M(p)〉ε

where

〈M(p)〉ε ≡
∫
Sε
M(p) (dsε)

g(ε)
. (6.15)

In the case of an isotropic spectrum the average (6.15) is just the average over the angles.
Finally for the isotropic spectrum we get Ohm’s law j = σE with

σ = e2

∫
dε

(
−∂f0

∂ε

)
g(ε)D(ε) (6.16)

where

D(ε) =
1

3

〈
v2τtr

〉
ε

is the partial diffusivity for the electrons with the given energy.
Indeed, consider a gas of electrons with the mean free time τ and mean free path ` = vτ .

Let the density of electrons, ne be non-uniform along the x-axis. In this case the flux of
the electrons through 1 cm2 of the surface normal to x is equal

iD(x) =

∫
ne(x− ` cos θ) v cos θ

dΩ

4π

where θ is the angle between v and x while ` is the electron mean free path, ` = vτtr. Here
we have taken into account that the electrons have arrived at the point with coordinate
x from the point with the coordinate x − ` cos θ in a ballistic way. As a result, non-
compensated current is

iD = −∂ne
∂x

`v

2

∫ 1

−1

cos2 θ d(cos θ) = −`v
3

∂ne
∂x

.

According to the definition of the diffusivity (diffusion coefficient), we get D = `v/3 =
v2τtr/3.
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In the case of Fermi statistics where (−∂f0/∂ε) = δ(ε− εF ) we get the Drude formula
(Problem 6.2)

σ0 = e2D(εF )g(εF ) =
ne2τtr

m
. (6.17)

The first expression is known as the Einstein relation.

If the degeneracy is not so strong, the energy dependence of the factor D(ε) becomes
important. This is just the case for semiconductors. We will come back to this problem
after the analysis of important scattering mechanisms which determine the dependence
τtr(ε).

In general anisotropic case the Ohms law has the form

j = σ̂E, or ji =
∑
k

σikEk .

The conductivity tensor σ̂ can be calculated with the help of the relation (6.16) if the
diffusivity tensor

Dik = 〈viI−1vk〉ε

is known. Here the formal ”inverse collision operator” is introduced which shows that one
should in fact solve the Boltzmann equation.

AC Conductivity

Solving the Boltzmann equation for the perturbation ∝ exp(−iωt) we obtain

σ(ω) = σ0
1

〈τtr〉

〈
τtr

1− iωτtr

〉
.

Here angular brackets mean

〈A〉 =

∫
dε ε3/2A(ε) (∂f0/∂ε)∫
dε ε3/2 (∂f0/∂ε)

.

The real part of this expression,

Reσ(ω) = σ0
1

〈τtr〉

〈
τtr

1 + ω2τ 2
tr

〉
,

represents ac loss in the sample, while imaginary part is the contribution to dielectric
function. The typical scale for the momentum relaxation time is about 10−12–10−14 s.
Consequently, frequency dependence is important at microwave frequencies.
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Thermoelectric Phenomena

Now we demonstrate another kind of problems which appear if a temperature gradient s
created in the sample. In this case the temperature is a slow function of co-ordinates and
can be expressed as

T (r) = T1 + (r− r1)∇T , T1 ≡ T (r1) .

If the characteristic scale of the spatial variation of the temperature, T/|∇T |, is large in
comparison with the scale at which temperature is formed (that is usually the phonon mean
free path, `ph) one can assume that at any point the distribution is close to equilibrium
one,

f0(ε, r) =

[
exp

(
ε− ζ(r)

kBT

)
+ 1

]−1

(6.18)

Here we take into account that the chemical potential ζ is also coordinate-dependent, since
it depends on the temparature. Consequently, we get

∇rf0 =

(
−∂f0

∂ε

)[
∇ζ(r)+

ε− ζ
T
∇T (r)

]
.

Thus in the l.h.s. of the Boltzmann equation we get[
(v · ∇ζ) +

ε− ζ
T

(v · ∇T )

](
−∂f0

∂ε

)
.

Comparing this expression with the corresponding l.h.s. of Eq. (6.13) of the Boltzmann
equation in the case of electric field we observe that an additional effective δE = ∇(ζ/e)
electric field appears, the total field being

E∗ = ∇
(
ζ

e
− ϕ

)
= −∇ϕ∗.

The quantity ϕ∗ = ϕ − ζ/e is called the electrochemical potential. This quantity rather
the pure electric potential ϕ describes the transport. In the following we will assume that
the static electric field includes this correction. Thus the first item leads to the extra
contribution to the Ohmic current and finally j = σE∗. As for the second one, we can plug
it into the equation

v · ∇rf0(r) =
ε− ζ
T

(v · ∇T )

(
−∂f0

∂ε

)
= −f − f0

τtr

to get

f1 = τtr
ε− ζ
T

(v · ∇T )
∂f0

∂ε
. (6.19)

Now we substitute this expression into Eq. (6.14) and calculate the current. The result
can be expressed as jT = −η∇T with

η = − e
T

∫
dε g(ε)D(ε)(ε− ζ)

(
−∂f0

∂ε

)
. (6.20)
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This expression differs strongly from the corresponding expression for the conductivity
by the factor (ε − ζ) under the integral. Indeed, assume that the temperature is zero,
so (−∂f0/∂ε) = δ(ε − εF ). We see that η = 0. At finite temperatures, some electrons
are excited above the Fermi level forming quasi-electron excitations and leaving quasi-hole
ones below the Fermi level. Both quasiparticles are dragged by the temperature gradient
in the same direction, but they have different charges. Consequently, there is almost exact
compensation of the contributions, the remainder has the order of kBT/εF . Indeed, because
(−∂f0/∂ε) is a sharp function we can expand the integrand as

g(ε)D(ε) = g(εF )D(εF ) + (ε− ζ)

[
d

dε

(
g(ε)D(ε)

)]
ε=εF

.

Note that εF ≡ ζ(T = 0). The contribution of the first item vanishes after substitution to
Eq. (6.20). To calculate the second contribution we extract the constant factor

(gD)′F ≡
[
(d
(
g(ε)D(ε)

)
/dε
]
εF

out of the integral. In the remaining intergral, we introduce a new variable, γ ≡ kBT (ε−ζ),
and extend the limits of integration over γ to −∞,∞. We are left with the integral

η =
ek2

BT

4
(gD)′F

∫ ∞
−∞

γ2 dγ

cosh2 γ/2

The results is

η =
π2

9
ek2

BT (gD)′F .

This is the well known Cutler-Mott formula.
There are some important comments in connection with this formula.

• The thermoelectric coefficient is proportional to the first power of the charge. Con-
sequently, it feels the type of the carriers and provides the way to determine it from
the experiment.

• In the case of non-degenerate materials the thermoelectric coefficient is much more
sensitive to the dependence of D(εF ) on the energy than the conductivity because in
contains the derivative.

• If there are several kinds of carriers the behavior of thermoelectric coefficient becomes
rich and very instructive to understand what happens.

Thermoelectric effects have important applications. Indeed, we have seen that in our
simplest case the current can be written as

j =σE∗ − η∇T.



106 CHAPTER 6. CLASSICAL DC TRANSPORT ...

If the circuit is open j = 0 and we obtain the thermoelectric field

E∗ = α∇T, α =
η

σ
.

The quantity α is called the differential thermo-e.m.f. or Seebeck coefficient. Indeed, the
voltage across the sample is

V =

∫ 2

1

α(dr · ∇T ) =

∫ T2

T1

α(T ) dT.

To measure this voltage one should prepare the thermocouple, i. e. system depicted in
Fig. 6.1. It should contain 2 branches fabricated from different materials. The voltage

T2

T1

T0

T0

V

a

b

a

E

Figure 6.1: The scheme of thermocouple.

measured between the leads is

VT =

∫ T2

T1

[αa(T )− αb(T )] dT.

We see that it is a relative effect, to measure absolute thermo-e.m.f. one branch is made
of a superconductor.

6.3 Energy Transport

Now we discuss the energy transport in an electron system in the presence of electric field
and temperature gradient. First we should define the energy flux. There are 2 conventional
ways to express the charge and energy currents, j and w, respectively. The first one is to
express both currents through the field E∗ and ∇T . In this way

j = σE∗ − η∇T ;

w − ϕ∗j = γE∗ − β∇T . (6.21)
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The quantity w − ϕ∗j has a physical meaning of the heat flux since we subtact the “con-
vectional” energy flux ϕ∗j = (ζ − εϕ)〈v〉 from the total energy flux.

More usual way is to express the electric field and the energy flux through the current
j and ∇T. In this case we get

E∗ = ρj + α∇T ;

w − ϕ∗j = Πj− κ∇T . (6.22)

It is clear that

ρ =
1

σ
, α =

η

σ
, Π =

γ

σ
, κ = β + Πη.

The quantity ρ is called resistivity, κ is called thermal conductivity, while Π is called the
Peltier coefficient.

The physical nature of the differential thermo-e.m.f. has been already discussed. The
nature of the Peltier coefficient can be visualized if one induces a current through the
boundary between two materials at a given temperature. If Π1 6= Π2 the fluxes are different
and it means that some energy is taken from the contact or it is given to the contact. So,
one has the way to cool, or to heat special regions. This is very important property for
applications.

Due to fundamental Onsager relations all the thermoelectric coefficients can be ex-
pressed through only one, say differential thermo-e.m.f. α.

Assume that some generalized forces Xi are applied to the system. They induce currents

Ji =
∑
k

QikXk

where the quantities Qik are called the kinetic coefficients. They are defined so that the
entropy production can be expressed as

Ṡ = −
∑
i

JiXi .

The Onsager relations follow from the fact that the entropy production must be positive.
Consequently, the tensor Q̂ must be symmetric,1

Qik = Qki .

To apply the Onsager relations we have to specify forces and currents. In our case, both
the divergence of the energy flux, − div w, and the Joule heating jE∗ contribute to the
entropy production. Consequently,

Ṡ = −
∫

div w

T
dV +

∫
jE∗

T
dV .

1In the presence of a magnetic field they should be generalized, see below.
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Integrating the first term by parts we get

Ṡ =

∫
w∇

(
1

T

)
dV +

∫
jE∗

T
dV .

We see that the generalized forces are

−E∗

T
, −∇

(
1

T

)
.

Thus the kinetic coefficients for our problem are

−σT, −ηT 2,
−γT, −βT 2.

Applying the Onsager relations we obtain γ = ηT . Using a similar approach for the
Eqs. (6.22), we get Π = αT . Combining the above eqialities we get κ = β − Tηα. The
second contribution to the thermal conductivity is always small in the degenerate gas
(Problem 6.5). Consequently, to analyze the thermal conductivity of a metal it is enough
to calculate β.

In fact, κ is determined both by electrons and phonons. Here we are interested only in
the electron contribution which is usually the main one in typical metals if the temperature
is not too low.

One can estimate the coefficient β from the kinetic equation in a similar way as we
have done to the thermo-e.m.f. We use the formula (6.19) for the distribution function and
take into account that the energy flux transferred by one electron is (ε− ζ)v. As a result,
instead of Eq. (6.20) we get

κ ≈ β =
1

T

∫
dε g(ε)D(ε)(ε− ζ)2

(
−∂f0

∂ε

)
.

In the case of strong degeneracy we get

κ =
π2

9
k2
BTg(εF )D(εF ).

It is interesting to calculate the ratio

κ
Tσ

=
π2k2

B

3e2
.

This relation is called the Wiedemann-Franz law while its r.h.s. is called the Lorenz number.
This law is derived under assumptions of isotropic spectrum and elastic scattering. One
can show that only the last one is necessary.

So we see that all the characteristics of the d.c. transport are determined by the energy
dependence of the quantity D(ε), i.e. by the energy dependence of the transport relaxation
time. If the relaxation time is described by a power law

τtr(ε, T ) ∝ T aεr → D(ε, T ) ∝ T aεr+1
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we get from Eq. (6.16) σ ∝ T a for the degenerate gas. For the Boltzmann gas with
the distribution f0 ∝ exp(−ε/kBT ) substituting D(ε, T ) = D0(T )(ε/kBT )r+1, g(ε) =
g(T )(ε/kBT )1/2 we obtain

σ =
e2D(T )ne
kBT

∫∞
0
xr+3/2e−x dx∫∞

0
x1/2e−x dx

=
e2D(T )ne
kBT

Γ(r + 5/2)

Γ(3/2)
∝ T a+r.

Here Γ(x) is the Γ-function.
In the next section we will discuss the scattering processes in more detail and then we

come back to the case of semiconductors to discuss the temperature dependencies of the
kinetic coefficients.

6.4 Scattering by Neutral and Ionized Impurities.

In the following we will not perform very cumbersome calculations to solve the Boltzmann
equation. Rather we will outline the main physics and obtain important estimates. The
main goal is to learn how to make those estimates.

To study scattering it is convenient to determine the scattering cross section. The
simplest idea one can use is that the atom is neutral and behaves as a hard sphere. Nev-
ertheless, in many important situations it is not the case, the atom is ionized and has an
electric charge.

The very important concept is that the electrons in the vicinity of the impurity atom
rearrange to screen the potential. Consequently, one should calculate the electric potential
which acts upon the electrons from the Poisson equation

ε∇2ϕ = −4πen′e

where −en′e is the excess electric charge while ε is the dielectric constant. The boundary
condition for this equation is

ϕ =
Ze

εr
at r → 0.

Now we should remember that in the presence of electric potential the chemical potential
ζ is changed to the electrochemical one, ζ − eϕ. Consequently,

n′e = ne(ζ − eϕ)− ne(ζ) ≈ −eϕ∂ne
∂ζ

. (6.23)

Finally, the Poisson equation has the form

∇2ϕ− ϕ

r2
s

= 0 (6.24)

where

rs =

(
4πe2

ε

∂ne
∂ζ

)−1/2

. (6.25)
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The solution of the Eq. (6.24) has the form (Problem 6.6)

ϕ =
Ze

r
e−r/rs , (6.26)

so the quantity rs is called the screening length.
Now let us estimate the screening length. In a degenerate gas, we get ne ∝ p3

F ∝ ε
3/2
F .

So
∂ne
∂ζ

=
3

2

ne
εF

and

rs =

(
6πe2ne
εεF

)−1/2

≡ rTF .

This is the so-called Thomas-Fermi length, rTF . For a typical metal we get

1

rTF
∼
(
e2p

3
F

~3

m

p2
F

)1/2

=
pF
~

(
e2

~vF

)1/2

.

The ratio e2/~vF has a clear physical meaning - it is just the ratio of the typical potential
energy e2/r̄ to the typical kinetic energy p2

F/2m. Indeed, in a typical metal, r̄ ∼ ~/pF and

e2/r̄

p2
F/m

∼ e2

~vF
.

This ratio is or the order 1 because the metal is “glued” by the conduction electrons.
Consequently, we get that the screening length in a typical metal is of the order of the
interatomic distance a and one comes back to the model of hard spheres.

There two important things to be mentioned.

• We have assumed that the electron response in local, i. e. the electron density n′e(r)
feels the potential at the same point. In fact, it is not the case because the resulting
electrical potential ϕ varies sharply in space, and the self-consistent approach (6.23)
fails. In general,

n′e(r) = −e
∫
K(r− r′)ϕ(r′) dV ′ .

The function K cannot be derived from classical considerations because the typical
spatial scale of the potential variation appears of the order of the de Broglie wave
length ~/p. We will come back to this problem later in connection with the quantum
transport. The function K(r) reads (in the isotropic case)

K(r) = −g(εF )
p3
F

(π~)3

[
cos(2kF r)

(2kF r)3
− sin(2kF r)

(2kF r)4

]
.

We see that the response oscillates in space that is a consequence of the Fermi de-
generacy (Friedel oscillations). These oscillations are important for specific effects
but if we are interested in the distances much greater than k−1

F the oscillations are
smeared and we return to the picture of the spheres of atomic scale. So one can use
the Thomas-Fermi approximation to get estimates.
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• In the expression (6.23) we have assumed linear response to the external potential. In
typical metals it is the case but in some semiconductors with small electron density
one needs some generalizations (not enough electrons to screen). We will come back
to the problem discussing hopping transport in semiconductors.

If the electrons are non-degenerate one should plug into the general expression (6.25)
the Boltzmann distribution function

f0(ε) = exp

(
ζ − ε
kBT

)
to get ∂ne/∂ζ = ne/kBT. As a result

rs ≡ rD =

(
4πe2ne
εkBT

)−1/2

,

the quantity rD is called the Debye-Hukkel length. One can get

rD
r̄

=

√
kBT

4πe2/εr̄
,

so the estimate differs from the Thomas-Fermi length by the presence kBT instead of the
Fermi energy εF .

Now we can make a very rough estimate of the conductivity of a typical metal. We get

σ ∼ nee
2τ

m
∼ nee

2`

pF
∼ ne
ni

e2

pFQ
.

Here we have taken into account that

` =
1

niQ

where Q is the effective cross section. Making use of the estimates

Q ∼ (~/pF )2, e2 ∼ ~vF , ni/ne ∼ ci

where ci is the atomic impurity concentration (the numbers of electrons and atoms are the
same) we get

σ ∼ 1016/ci s−1 .

To analyze the situation with the Boltzmann gas one should be more careful because
the energy dependence of the relaxation time is important. In this case both a typical
de Broglie wave length ∼ ~/p and the screening length rs appear much greater than a
typical interatomic distance, a. Consequently, while calculating the matrix element |v(θ)|
for scattering against charged inpurities one can forget about the periodic potential and
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just calculate the matrix element of the potential (6.26) between the plane wave states. As
a result, (Problem 6.7),

W (θ) = 4πniv

[
e2/ε

2ε(1− cos θ) + ~2/2mr2
s

]2

. (6.27)

After substitution of the cross section in the definition of the transport relaxation time
(6.11) we get

τtr =
ε2m2v3

2πe4niΦ(η)
=

√
2mε2ε3/2

πe4niΦ(η)
(6.28)

where

Φ(η) = ln(1 + η)− η

1 + η
, η =

4m2v2r2
s

~2
=

8mεr2
s

~2
.

We observe if the screening is neglected rs → ∞ than the the transport relaxation time
τtr → 0, and the transport relaxation rate diverges (long-range potential!). The function
Φ(η) slowly depends on the energy, so

τtr ∝ ε3/2 .

6.5 Electron-Electron Scattering

Now we estimate the electron-electron scattering, and as usual, we start from the case of
Fermi gas. Suppose that particle 1 is excited outside the Fermi sea, the first-order decay
is as follows from Fig. 6.2: Particle 1 interacts with particle 2 inside the Fermi shpere,
and both subsequently make transitions tostates 1’ and 2’ outside the Fermi sphere (Pauli
principle!).. According to the momentum conservation law,

p1

p
2p’1

p’2

p1 p
2

p’1 p’2+ = +

1

1’ 2

2’

pF

Figure 6.2: Scattering processes for electron-electron interaction.

p1 + p2 = p′1 + p′2 ,
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and, as we have seen,

p1, p
′
1, p

′
2 > pF ; p2 < pF .

The momentum conservation law is shown graphically in the right panel of Fig. 6.2. One
should keep in mind that the planes (p1,p2) and (p

′
1,p

′
2) are not the same, they are

shown together for convenience. To get the scattering probability for particle 1 one should
integrate over the intermediate momenta p2 and p′1,

W ∝
∫
δ(ε1 + ε2 − ε

′

1 − ε
′

2) (dp2) (dp
′

1)

since p′2 is fixed by the momentum conservation. The energy conservation law actually
determines the angle between p′1 and p′2 for given absolute values of these vectors. Conse-
quently, the rest is to integrate over p2 = |p2| and p′1 = |p′1|.

Let p1 be close to pF . It means that all the momenta are close to pF and the angles
with the resultant vector p1 + p2 are almost the same. So let us assume cosines of these
angles to be the same and from the relation between the projections write down

p′1 ≈ p1 + p2 − p′2 .

Now let us recall that p′2 > pF . Consequently, p′1 < p1 + p2 − pF . But at the same time,
p
′
1 > pF . Thus

p1 + p2 − pF > pF , or p2 > 2pF − p1.

But from the Pauli principle, the upper limit for p2 is pF . As a result, we come to the
following chain of inequalities

0 > p2 − pF > pF − p1, 0 < p
′

1 − pF < (p1 − pF ) + (p2 − pF ).

Finally, ∫
dp2 dp

′

1 =

∫ 0

−α1

dα2

∫ α1+α2

0

dα
′

1 =
α2

1

2

where we have introduced αi = pi−pF . Now we should remember that ε−εF = vF (p−pF ).
So W ∝ (ε− εF )2. The simplest way to estimate τ is to use the dimensionality approach.
Indeed, the average potential and kinetic energies are of the order of εF . Consequently, the
only quantity which is proportional to (ε− εF )2 and has the time dimensionality is

τ ∼ ~εF
(ε− εF )2

. (6.29)

We came to an important conclusion: the quasiparticles near the Fermi level, |ε−εF | � εF ,
can be treated as free partiicles provided

~
(ε− εF )τ

≈ ε− εF
εF

� 1 .
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The typical value for the quasiparticle energy is kBT � εF . This is why the electron-
electron interaction can be treated in the leading approximation in a self-consistent ap-
proximation which results in a renormalization of the particle mass, m0 → m∗, and in a
relatively weak damping with the rate τ−1.

Substituting (6.29) in the Drude formula we easily get the estimate of the conductivity,
limited by the electron-electron scattering

σ ∼ nee
2~εF

m(kBT )2
∼ 1016

(
εF
kBT

)2

s−1.

Note that electron-electron interaction is the typically inelastic one. Electron-electron
interaction is usually unimportant for the Boltzmann gas (not too many electrons!). One
should also know that disorder drastically increases the electron-electron interaction. We
will discuss this problem later.

6.6 Scattering by Lattice Vibrations

Now we come to a very important point - to the electron phonon interaction which leads
to many important consequences including superconductivity.

Interaction Hamiltonian (Estimates for Metals)

There are several mechanisms of electron-phonon interaction. First, the deformed lattice
creates a polarization P, the polarization charge being div P. Consequently, one can write
down the interaction energy as

−e
∫
Q(r− r

′
) div P(r′) dV ′ .

In the absence of screening, Q(r− r
′
) ∝ |r− r

′|−1 but in a typical metal the screening
makes it local. As a result the estimate of Q(r− r

′
) is Q(r− r

′
) ≈ a2δ(r− r

′
). The

polarization, in its turn, is of the order of naeu where na is the atomic density which is of
the order of the electron one while u is the displacement vector. If

u(r, t) =
∑
q

[
uq e

iq·r−iωqt + u∗q e
−iq·r+iωqt

]
,

then qth Fourier component of the quantity div P(r) has the estimate inae(q · u) ≈
i(ωq/s)naeu. Here we consider the case of acoustic phonons when q = ωq/s and s is
sound velocity.

Finally, we the following estimate for the Fourier component of the interaction potential

Uq ∼ ie2a2na
ωq

s
uq . (6.30)
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In the following we use the second quantization scheme. According to this approach,
phonon system is characterized by number of phonons, Nq,j, having the wave vector q
and belonging to the branch j, so the state is specified as |Vq,j〉. The so-called phonon
annihilation (or creation) operators bq, b

†
q are defined by the properties

b|N〉 =
√
N |N − 1〉 b†|N〉 =

√
N + 1 |N + 1〉 ,

the commutation rules being

bb† − b†b ≡ [b, b†]− = 1 .

The creation and annihilation operators for different modes commute. It is easy to check
the following important properties of the creation and annihilation operators,

b†b |N〉 = N |N〉 ,
〈N ′|b|N〉 =

√
N δN ′,N−1 , 〈N ′|b†|N〉 =

√
N + 1 δN ′,N+1 .

The interaction Hamiltonian in terms of electron creation and annihilation operators can
be written as

Hint =
∑
kk′

〈k′|U(r)|k〉a†k′ak =
∑
kk′

a†k′ak
∑
jq

[
Cj(q)〈k′|eiqr|k〉 bq + C∗j (q)〈k′|e−iqr|k〉 b†q

]
.

Here Cj(q) absorbs proportionality coefficients between the perturbation potential and
normal coordinates.

From the properties of Bloch functions and lattice vibrations one can prove (Check!)
that

〈k′|eiqr|k〉 =
∑
G

δ(k′ − k∓ q−G) ≡ ∆k′,k+q (6.31)

where G are the reciprocal lattice vectors. Finally e can express the interaction Hamilto-
nian as

Hint =
∑
jqkk′

a†k′ak
[
Cj(q)∆k′,k+q bq + C∗j (q)∆k′,k−q b

†
q

]
=

∑
jqkk′

Cj(q)∆k′,k+qa
†
k′akbq + h.c. . (6.32)

Here h.c. stands for Hermitian conjugate. The form (6.32) is very illustrative to show the
important transitions.

We can specify the following processes

• Phonon emission:

electron : scattered, k→ k
′
= k− q + G

phonon : created with the momentum ~q.
matrix element : M+

k,k
′ = C∗q

√
Nq + 1〈k′|e−iqr|k〉

operator form :
∑

GC
∗
q a
†
k′akb

†
q δ(k

′ − k + q−G) .

(6.33)
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• Phonon absorption

electron : scattered, k→ k
′
= k + q + G

phonon : absorbed with the momentum ~q.
matrix element : M−

k,k
′ = Cq

√
Nq〈k

′ |eiqr|k〉
operator form :

∑
GCq a

†
k′akbq δ(k

′ − k− q−G)

(6.34)

To estimate the quantities Cq one has to substitute to Eq. (6.30) the expression for uq, i. e.
to express the lattice displacemnt in terms of phonon annihilation and creation operators,
b and b†, respectively. For a simple lattice the coefficients uq acquire the following operator
form:

ûq →

√
~

2ωqNM
eq bq , û∗q →

√
~

2ωqNM
eq b

†
q .

Here N is the number of atoms in the sample, M is the atomic mass, eq is the unit vector
parallel to uq. We have taken into account only one acoustic mode. This procedure leads
to the following estimate for C(q)

Cq ∼ i
e2a2na√
NM

ω

s

√
~
ω
∼ i

√
~naω
VnaM

e2a2na
s
∼ i naa

3 e
2

a

1

s
√
M

√
~ω
Vna

∼ i

√
~ω
Vmna

pF . (6.35)

Here na = N/V , we have taken into account that naa
3 ∼ 1, e2/a ∼ εF ∼ p2

F/2m, s
√
M ∼

vF
√
m.

Transition Probability

Now we can construct the transition probabilities from the Fermi golden rule,

Wfi =
2π

~
|Mfi|2 δ(εf − εi)

where the subscripts i, f stand for the initial and final state, respectively.
For simplicity we assume here that G = 0, that is the case for the most interesting

situations (see later). For the case (6.33) we get

W+
k−q,k =

2π

~
|Cjq|2(Nq + 1)δ [ε(k− q)−ε(k)+~ωj(q)] .

The probability of the absorption process (6.34) is

W−
k+q,k =

2π

~
|Cjq|2Nqδ [ε(k + q)−ε(k)−~ωj(q)] .

for the absorption one. The total probability for the k → k − q transitions for a given
phonon brach is then:

Wk−q←k = (2π/~) |Cq|2

×
{

(Nq + 1)δ [ε(k− q)−ε(k)+~ωq]︸ ︷︷ ︸+N−qδ [ε(k− q)− ε(k)− ~ωq)]︸ ︷︷ ︸
}
. (6.36)

emission absorption
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To get the probability of the reverse transition, Wk←k−q, one should first replace k→ k + q
and then q→ −q. We get

Wk←k−q = (2π/~) |Cq|2

×
{

(N−q + 1)δ [ε(k− q)−ε(k)− ~ωq]︸ ︷︷ ︸+Nqδ [ε(k− q)− ε(k) + ~ωq)]︸ ︷︷ ︸
}
. (6.37)

emission absorption

To construct the transition rate from the state k one has to multiply Eq. (6.36) by the factor
fk(1− fk−q) and then sum over the phonon brancehs j and wave vectors q. The transtion
rate to the state k is given by multiplication of Eq. (6.37) by the factor fk−q(1− fk) with
subsequent similar summation. Finally we come to the following collision integral

I =
2π

~
∑
jq

|Cj(q)|2
[
F+
k,k−qδ(εk−q−εk−~ωjq) + F−k,k−qδ(εk−q−εk+~ωjq)

]
(6.38)

where

F+
k,k−q = fk(1− fk−q)N−qj − fk−q(1− fk)(N−qj + 1),

F−k,k−q = fk(1− fk−q)(Nqj + 1)− fk−q(1− fk)Nqj . (6.39)

Now we start from rough estimates and then derive the relaxation rate more carefully.

Relaxation Time for Phonon Scattering.

Rough Estimate.

To get a rough estimate we first understand that the maximal phonon frequency is ωD that
corresponds to qD ∼ π/a ∼ kF . One has the estimate ~ωD ∼ ~sπ/a ∼ spF . So there are
two limiting cases which differ by the relation between ~ωD and kBT.

1. At high temperature,
kBT � ~ωD ,

the most probable are the processes with high-frequency phonons, ω ≈ ωD, and we can use
the classical limit for the Planck function

Nq ≈
kBT

~ωq

≈ kBT

~ωD
� 1.

We see that all the items in the collision integral have the same order. The integral over
the q is of the order

q3
D

εF
∼ mpF

~3
.

Using the estimate (6.35) for the coefficient Cq we get

1

τtr

∼ 1

~
p2
F

~ωD
mna

kBT

~ωD
mpF
~3
∼ kBT

~
.
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The estimate for conductivity is

σ =
nee

2τ

m
∼ p2

F

m~
εF
kBT

∼ 1016 εF
kBT

s−1 .

2. At low temperatures where
kBT � ~ωD

the thermal phonons with ~ω ∼ kBT are most important, their wave vector being

qT ∼ kBT/~s .

We see that qT � kF . So these collisions are strongly inelastic - the change of the excitation
energy (with respect to the Fermi level) is of the order of the excitation energy itself, while
the change of momentum is relatively small. The δ-function in the conservation laws can
be written as

δ

[
p2

2m
− (p−~q)2

2m
± ~ωq

]
= δ

[
~pq

m
− ~2q2

2m
± ~ωq

]
=

m

~pq
δ

[
cosϑ− ~q

2p
± ms

q

]
.

We see that both the items under the δ-function are small (the second one is of the order
ms/pF ∼ s/vF � 1). The integral over q splits into the integral over the length of the
wave vector and over the angles. Thus the δ-function gives 1 after the integration over the
angles because is requests | cosϑ| � 1. Finally, we get the following estimate

1

τ
∼ 1

~
p2
F~ω
mna

m

~pF q
q3 ∼ 1

~
p2
F~ω
mna

ms

pF~ω

(ω
s

)3

∼ 1

~
p2
FkBT

m(pF/~)3

ms

pFkBT

(kBT )3

~3s3
∼ kBT

~

(
kBT

~ωD

)2

.

This is the good estimate for the escape relaxation time. To get the estimate one should
multiply this quantity by the characteristic value of

1− cos θ ≈ θ2/2 ∼ (~q/pF )2 ∼ (kBT/~ωD)2 .

As a result,
1

τtr

∼ kBT

~

(
kBT

~ωD

)4

and the conductivity acquires an extra factor (~ωD/kBT )4 :

σ ∼ 1016 εF
kBT

(
~ωD
kBT

)4

s−1 .

We see that for small-angle scattering the transport time is much longer than the escape
time. It is interesting that in the expression for the thermal conductivity one can study the
relaxation of the energy flux. For the energy flux, every collision is effective and the proper
estimate for the relaxation rate is the escape time τ. As a result, the Wiedemann-Franz
law is not valid any more, and

κ
Tσ
∼ k2

B

e2

(
kBT

~ωD

)2

.
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Derivation of the Relaxation Time. 2

Now we outline the procedure of more rigorous derivation of the relaxation rate which
includes the summation over q∑

q

→ V
(2π)3

∫ qmax

qmin

q2 dq

∫ π

0

sinϑ dϑ

∫ 2π

0

dϕ

where qmin and qmax are determined by the conservation laws, ϑ ≡ (q̂,k).
First, one should prove the relaxation time approximation, i.e. that

I(f1) ∝ f1.

To prove it let us (as we have done earlier) search the solution as

f1 = −nf(ε) = −f cos(f̂ ,k), n ≡ k/k

and chose the polar axis z along the vector k. In our notations

1− cos ̂(k,k− q) = (q · k)/qk = cosϑ .

As in the case of impurity scattering, it is convenient to use the relation

fq =fzqz+f⊥q⊥ ,

or

cos(f̂ ,q) = cos(k̂,q) cos(f̂ ,k)+ sin(k̂,q) sin(f̂ ,k) cosϕq,f

= cosϑ cos(f̂ ,k)+ sinϑ sin(f̂ ,k) cosϕq,f .

Now we can integrate this equation over ϕq,f taking into account that the angle (f̂ ,k)
is ϕq,f -independent.(see Fig. 6.3). We get∫

cos(f̂ ,q) dϕ = 2π cosϑ cos(f̂ ,k).

The term cos(f̂ ,k) can be extracted from the integral over q and we have proved that
I(f1) ∝ f1.

Finally, after neglecting of the term proportional to s/v we get

1

τtr

= −(2π)2

~
V

(2π)3

∫ qmax

qmin

q2 dq |C(q)|2 m

~2kq

q

k

∫ π

0

sinϑ cos θ dϑ

× [Nqδ (q/2k + cos θ)− (Nq + 1)δ (q/2k − cos θ)]

=
V

8π2

m

~2k3

∫ qmax

qmin

|C(q)|2(2Nq + 1) q3dq . (6.40)

2Optional section
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k

q

f

β

α

θ

ϕ

Figure 6.3: The arrangement of angles.

The result is determined by its limits determined by the conservation law and by the
phonon spectrum. We have qmin = 0 while

qmax = min(qD, 2k), ωmax = max(ωD, 2ks) .

At high temperature, at ~ωmax ≤ kBT, as is was shown, Nq ≈ kBT/~s and we get

1

τtr

∝ 1

k3

∫ qD

q
kBT

~sq
q3dq ∝ Tq4

D

k3

{
q4
D for qD < 2k

(2k)4 for qD > 2k
∝ T

{
ε−3/2

ε1/2

That is consistent with the rough estimates given above. The last case is important for
semiconductors with low values of k. Remember that for the Boltzmann gas the typical
value of ~k is

√
mkBT . Indeed,

~sk
kBT

≈

√
ms2

kBT
, ms2 → 0.1 K.

In typical metals, k ∼ kF ∼ qD, and at low temperatures we meet the case ~ωmax ≤ kBT.
This case is much more tricky because the collisions are inelastic and we cannot use the
expression (6.11) for the relaxation time. Actually, one should linearize the collision integral
(6.38). The main steps of the derivation are given below.

We transform the collision integral as follows. First we denote fk = f1 + ϕ1, fk−q =
f2 +ϕ2, where fi,k are equilibrium functions, and then linearize with respect to ϕi. We get

F+
k,k−q = fk(1− fk−q)N−q − fk−q(1− fk)(N−q + 1)

→ [ϕ1(1− f2)− ϕ2f1]N − [ϕ2(1− f1)− ϕ1f2] (N + 1)

= ϕ1 [N(1− f2) + f2(N + 1)]− ϕ2 [Nf1 + (N + 1)(1− f1)]

= ϕ1 (N + f2)− ϕ2 (N + 1− f1)
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for the phonon emission and

F−k,k−q = fk(1− fk−q)(Nq + 1)− fk−q(1− fk)Nq

→ (ϕ1(1− f2)− ϕ2f1) (N + 1)− (ϕ2(1− f1)− ϕ1f2)N

= ϕ1 ((N + 1)(1− f2) + f2N)− ϕ2 ((N + 1)f1 +N(1− f1))

= ϕ1 (N + 1− f2)− ϕ2 (N + f1)

for the absorption. Then we search solution in a form

ϕ(k) =a(k)

(
−∂f0

∂ε

)
=
a(k)

kBT
f0(1− f0)

where a(k) weakly depends on the energy, but strongly depends on the direction of k. As
a result, we have

kBT F
+
k,k−q = a1f1(1− f1)(N + f2)− a2f2(1− f2)(N + 1− f1)→ emission

To get a similar formula for absorption one should make a similar substitution. The result
can be obtained from that above by the replacement N ↔ N + 1, f ↔ 1− f ,

a1f1(1− f1) (N + 1− f2)− a2f2(1− f2) (N + f1)

and then replace 1 ↔ 2 in the δ-functions to take into account the conservation law.
Finally,

kBT F
−
k,k−q = a1f2(1− f2) (N + 1− f1)− a2f1(1− f1) (N + f2)→ absorptiom

Combining with the expression for the emission and absorption we get

(a1 − a2)

kBT
[f2(1− f2) (N + 1− f1) + f1(1− f1) (N + f2)] .

Fragments in the square brackets are

N + 1− f1 =
eν

eν − 1
− 1

ex + 1
= Nf1

(
ex+ν + eν − eν + 1

)
= N

f1

f2

,

N + f2 =
1

eν − 1
+

1

ex+ν + 1
= Nf2

(
ex+ν + 1 + eν − 1

)
= (N + 1)

f2

f1

where x = (ε− ζ)/kBT , ν = ~ω/kBT . Finally, we get in the brackets

Nf1(1− f2) + (N + 1)f2(1− f1) = 2Nf1(1− f2)

and the integrand in the collision integral becomes proportional to

2Nf1(1− f2)

kBT
(a1 − a2).

We see that only thermal phonons are important since the integrand of the collision op-
erator decreases exponentially at ν � 1. As a result, we have proved the estimates made
above. Unfortunately, the relaxation time approximation is not exact in this case and one
should solve the Boltzmann equation numerically.
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Umklapp-Processes3

It was a sort of cheating in our previous calculations of the electron-electron scattering.
Indeed, suppose that we have only electrons which do not know anything about the lattice.
How can the total momentum of the whole electron system relax?

To understand this important problem one should remember that there are processes
where the quasimomentum is not conserved but there is a momentum transfer ~G. To
analyze the situation more carefully we write down the collision integral

I(f) = −
∫
W

p
′
1p
′
2

p1p2

[
fp1fp2(1− fp′1)(1− fp′2)− fp′1fp′2(1− fp1)(1− fp2)

]
× δ(ε1 + ε2 − ε

′

1 − ε′2) (dp2) (dp′1) . (6.41)

Here we assume that the momentum p
′
2 is determined by the conservation law

p1 + p2 = p
′

1 + p
′

2 + ~G

and one should integrate over the remaining 2 variables. Because the process is inelastic
we search the non-equilibrium function f1 as

f1(p) = a(p)

(
−∂f0

∂ε

)
=
a(p)

kBT
f0(1− f0) . (6.42)

We have 4 terms proportional to a. The terms proportional to a(p1) ≡ a1 are

− a1

kBT
f1(1− f1)

[
f2(1− f ′1)(1− f ′2) + f

′

1f
′

2(1− f2)
]

where all the functions are the equilibrium Fermi ones. Using the detailed balance equation

f1f2(1− f ′1)(1− f ′2)− f ′1f
′

2(1− f1)(1− f2) = 0

we transform the previous equation as (Check!)

− a1

kBT
f1f2(1− f ′1)(1− f ′2) .

The same transformation can be done with all other terms and we get the following com-
binations in the collision integral (6.41).

1

kBT
f1f2(1− f ′1)(1− f ′2)(a1 + a2 − a

′

1 − a
′

2) .

If we assume that a ∝ pi we get that the last bracket vanishes because of the momentum
conservations. Consequently, we have no relaxation and a finite current in the absence of

3Optional section



6.6. SCATTERING BY LATTICE VIBRATIONS 123

Figure 6.4: The Fermi surfaces of alkali metals and semimetals.

any field. To get a finite answer one should take into account the processes with finite G,
the so-called Pierls Umklapp processes.

We have seen that if p1 is close to the Fermi surface all other momenta are also close
to the Fermi surface, all the vectors being in the BZ. Thus to get a finite resistance one
should request

max(|p1 + p2 − p
′

1 − p
′

2|) = ~Gmin

or

4 max pF (n) >~Gmin .

This relation is definitely met if the FS reaches the boundary of the BZ. The same is true
for the metals with near-spherical FS because the volume of the FS is equal to 1/2 of the
BZ volume (half full band). It means that the radius of the FS is greater that 1/2 of the
reciprocal lattice vector.

In semimetals like Bi the FS contains quasi-electron and quasi-hole valleys and electron-
electron interaction is important for inter-valley transitions (see Fig. 6.4).

The situation is more complicated for electron-phonon collisions. We have assumed the
phonons to be equilibrium. It means that we assume some effective mechanism to create
equilibrium in the phonon gas, say, scattering of phonons by defects or phonon-phonon
interaction including Umklapp processes. If the metal is very pure and the temperature
is low the only scattering mechanism for phonons is their scattering by the electrons.
Consequently, one should construct the Boltzmann equation for phonons

∂Nq

∂t
+
∂ω(q)

∂q

∂Nq

∂r
= Iph(Nq).

The collision integral with electrons has the form

Iph−e =

∫
W [f1(1− f2)(Nq + 1)− (1− f1)f2Nq] δ(ε1 − ε2 − ~ωq) (dp1)

Again, we can search the solution for electrons as (6.42) and for phonon in the form

N1(q) =b(q)

(
− ∂N0

∂(~ω)

)
=
b(q)

kBT
N0(1 +N0).
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As a result, we get

I ≈
∫
Wf10(1− f20)(Nq0 + 1)(a1 − a2 − b) (dp1) .

Again, if a ∝ pi, b ∝ ~qi we get zero. Physically, it means the sum of electron and
phonon quasimomenta conserve. As a result, we have a persistent motion of electrons
accompanied by a ”phonon wind”. Again, we need the Umklapp processes to get finite
electric and thermal conductivity. At high temperatures it is not a problem to find such
processes. But at low temperatures the momenta of thermal phonons are small, and one
can neglect the phonon quasimomenta in the conservation law

p1−p2−~q = ~G .

So we come to the criterion

2 max pF (n) >~Gmin

that cannon be met if the FS does not touch the BZ boundary. That changes all the
kinetics because thermal phonons cannot take the electron momentum. Consequently, we
need high-frequency phonons with q ∼ qD, their number being proportional to exp(−T0/T )
where T0 ∼ ~ωD/kB. The resulting situation appears very tricky. To get an insight, let us
come to the picture of extended BZs periodic in the reciprocal space. If the FS is open the
electron momenta relaxation is just a diffusion along this surface and we have shown that

τe ∼
1

ωD

(
~ωD
kBT

)5

.

If the FS is closed, Umklapp processes mean hops between different branches. As a result,
we get

1
τu
∼ ωD

(
kBT0

~ωD

)3

e−T0/T︸ ︷︷ ︸ ·
kBT

~ωD︸︷︷︸
number of phonons part of time

.

The last factor is just the part of time which electron spends near the region to which it
can hop. Indeed, δp ≈ kBT/s, and δp/pF ∼ kBT/~ωD. The total relaxation time is a sum

τ ′ = τe + τu

of the diffusion time over the closes surface and the time τu, the longest being most im-
portant. Note that here we add partial times rather than rates. The reason is that the
scattering events take place sequentially.

As a result, we come to a crossover between the power and exponential temperature de-
pendencies. Remember that all this physics is relevant only to very clean metals, otherwise
impurity scattering is the most important at low temperatures.
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Temperature Dependence of Resistivity in Metals

Now we review the temperature dependence of the conductivity of metals. We have as-
sumed recently that only one scattering mechanism is important. In real life there is a
mixture of the mechanisms, the interplay being temperature dependent. If we assume the
mechanisms to be independent the resistivities ρ are approximately additive because one
should sum the scattering rates. So, according to the results of Boltzmann equation, at
low temperatures

ρ = c + aT 2︸︷︷︸ + bT 5︸︷︷︸
e-e e-ph

(except alkali metals) while at high temperatures phonon scattering is the most important
and

ρ = AT.

The corresponding dependences of the thermal conductivity are

κ−1 = dT−1 + fT + gT 2, and κ = const .

The temperature dependence of the resistivity of semiconductors is more tricky because
the electron concentration is temperature dependent. We will come back to this problem
later.

It is also important to know, that at very low temperatures quantum contribution to
resistivity becomes important. This contribution cannot be analyzed with the help of the
Boltzmann equation and we will also discuss it later.

6.7 Electron-Phonon Interaction in Semiconductors

Acoustic Phonons

Deformational interaction

Usually, the interaction with acoustic phonons in semiconductors is expressed in terms of
the so-called deformation potential. For long waves one can describe the crystal a an elastic
continuum, the deformation being characterized by the strain tensor

û→ uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
.

The strain changes the distances between atoms and, as a result, the electron energies
change. A typical picture of the change of the forbidden gap width under the influence
of an acoustic vibration is shown in Fig. (6.5). Note that the strain leads to a different
influence than an electric field which shifts both bands in the same direction. Consequently,
one can expand the position, say, of the bottom of the conduction band as

Ec(û) = Ec(0) +
∑
ik

Λikuik.
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C

V

a 0A

Figure 6.5: The variation of the forbidden gap.

One can show that in a cubic crystal off-diagonal components of the deformation potential
tensor Λ̂ vanish. Moreover, because all the axis are equivalent, Λii = Λ and we get

Ec(û) = Ec(0) + Λ div u. (6.43)

Consequently, we come to the interaction energy of the form (6.30)

Uq ∼ Λiquq.

The only difference is the replacement of the estimate e2a2na by the deformation potential
Λ. As a result, the interaction constant C(q) can be expressed as

|C(q)|2 =
Λ2q2~

2NMωq

∝ q.

The deformation potential can be calculated for a real band structure and measured ex-
perimentally. The selection rules for electron-phonon transitions are determined by the
symmetry.

Piezoelectric interaction.

Piezoelectric materials (ZnS, ZnSe, Cds, etc.) are ionic crystals without inversion symme-
try. The strain uik induces in such crystals the electric polarization with the components

Pi =
∑
kl

βi,klukl.

where β̂ is called the piezoelectric tensor. The corresponding electric potential is deter-
mined from the Poisson equation

−
∑
ik

εik
∂2ϕ

∂xi∂xk
+ 4π

∑
ikl

∂

∂xi
βi,kl

∂

∂xk
ul = 0 .



6.7. ELECTRON-PHONON INTERACTION IN SEMICONDUCTORS 127

If we assume
ϕ = ϕqe

iqr, u = uqe
iqr

we get

ϕq =
4π
∑

ikl βi,klqiqkuql∑
ik εikqiqk

.

Specifying the polarization vector ej(q) and the unit vector of the propagation direction
n = q/q we get

−eϕq = Gu0, G(q) = −4πe
∑

ikl βi,klninkejl(q)∑
ik εiknink

Comparing this expression with the expression (6.43) we see that for a given q one should
replace ∑

ik

Λikniek → G(q)/q.

We see that the corresponding scattering factors |C(q)|2 behave as q/q2 ∝ 1/q. It means
that at low temperatures piezoelectric interaction is more important than the deformational
one. Since piezoelectric interaction is mediated by electric fields their screening by charge
cariers at q . r−1

s can be important.

Optical Phonons

In non-polar materials one can also characterize the interaction as

He−ph = Λ0u

where u is the relative displacement of the atoms in the basis. Much more interesting is
the interaction in polar crystals where, as we have seen, optical phonons produce electric
fields. In these materials the displacement s = u+−u−, see Sec. 2.2, page 33 for notations,
creates the polarization (Problem 6.8)

P =

√
N0Mrω2

l

4πε∗
(u+ − u−) (6.44)

where
1

ε∗
=

1

ε∞
− 1

ε0
.

We take into account only longitudinal vibrations which effectively interact with the elec-
trons. Then,

∇2ϕ = 4π div P =

√
4πN0Mrω2

l

ε∗
div (u+ − u−).

Then, as usual, we expand the displacements in terms of the normal co-ordinates

ukj (r) =
1√
NMk

∑
qj

ejk(q)bj(q,t)e
iqr (6.45)
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and take into account that at long waves the center of gravity does not move,√
M1ej1 +

√
M2ej2 = 0, e2

j1 + e2
j2 = 1.

As a result,

ej1 =

√
M1

M1 +M2

ij, ej2 = −
√

M2

M1 +M2

ij.

Finally we substitute these expressions to Eqs. (6.45) for u± and get (Problem 6.9)

φ = −i
√

4πω2
l

ε∗

∑
q

1

q
(bqe

iqr − b∗qe−iqr) (6.46)

Using the second quantization procedure (page 41) we arrive at the famous Frölich Hamil-
tonian

He−ph =
1√
V

∑
q,j

Mj

q
a†p−~qap(bqj + b†qj) (6.47)

with
M2

j = 2πe2~ωl,j/ε∗ .

Sometimes it is expressed as

M2 =
4πα~(~ωl)3/2

√
2m

, α =
e2

~ε∗

√
m

2~ωl
.

The dimensionless constant α is called the polaron constant.
Now we can analyze the conservation laws εk±q = εk ± ~ωl which can be rewritten as

~2q2

2m
± ~2kq cosϑ

2m
∓ ~ωl = 0 .

The roots of this equation are

q1 = −k cosϑ±
√
k2 cos2 ϑ+ k2

0, q2 = −k cosϑ±
√
k2 cos2 ϑ− k2

0

where ~2k2
0/2m = ~ωl.

1. If k � k0 we get for both absorption and emission the old conditions qmin = 0, qmax =
2k. At high temperatures, kBT � ~ωl the scattering is elastic, and we return to the same
expression as for acoustic phonons. Using Eq. (6.40) we get

τtr =

√
2

2

~2ε∗

e2
√
mkBT

ε3/2 ∝ T−1ε3/2.

2. The case of low temperatures,

~ωl � kBT ,
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is more tricky. In this case only absorption processes can take place, and

qmin =
√
k2 + k2

0 − k (ϑ = 0), qmax =
√
k2 + k2

0 + k (ϑ = π).

It is clear, that the scattering is strongly inelastic and in general one cannot use the
relaxation time approximation. Nevertheless, some simplification does exist. Indeed, note
that the ratio of the emission and absorption probabilities is

(Nq + 1)/Nq ≈ exp (~ωl/kBT )� 1 .

So if the electron absorbs an optical phonon it should immediately emit another one. As
a result, the change of energy appears small while the change of the quasimomentum is
large. One can get the result taking into account only the absorption processes. The
corresponding δ-function is

δ

(
~2q2

2m
+

~2kq cosϑ

2m
− ~2k2

0

2m

)
=

m

~2kq
δ

(
q2 − k2

0

2kq
+ cosϑ

)
while the relaxation time can be obtained as

1

τtr

=
1

8π2

m

~2k3

∫ qmax

qmin

w(q)Nq
q2 − k2

0

q
q2 dq

≈ (e2mωl/~2ε∗k3) exp(−~ωl/kBT )

2k
√
k2 + k2

0 − k0 ln

√
k2 + k2

0 + k√
k2 + k2

0 − k︸ ︷︷ ︸


≈ (4/3)k3/k0

.

Expanding this expression in powers of k/k0 we get/k0

τtr =
2
√

2

2

~2ε∗

e2
√
m~ωl

exp

(
~ωl
kBT

)
.

This scattering is very weak. Note that it is not the case of the so-called hot electrons with
high energies, which can emit optical phonons.

The polaron. 4

We take the opportunity to demonstrate the role of interaction when it cannot be considered
as weak. Let us consider the interaction of an electron with optical phonons. According
to quantum mechanics, the change of the ground state energy due to interaction is

En − E (0)
n = 〈n|Hint|n〉+

∑
m6=n

|〈m|Hint|n〉|2

E (0)
n − E (0)

0

.

4Optional section
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Consider the interaction with a polarized crystal. At T = 0 only emission of phonons
is possible. We have Nq = 0, N

′
q = 1, k

′
= k− q. The diagonal matrix element is zero

because it contains the same number of phonons. As a result, we get

εk − ε(0)
k =

∑
q

|〈1,k− q|−eΦ|0,k〉|2

h2k2

2m
− h2(k− q)2

2m
− ~ωl

=
2πe2~ωl

ε∗

∫
(dq)

q2

(
h2k2

2m
− h2(k− q)2

2m
− ~ωl

)−1

.

As usual we introduce polar co-ordinates with the axis along k

(dq)→ (2π)−2q2 dq sinϑ dϑ; kq = kq cosϑ

and expand the integrand in powers of k. The integral can be calculated easily, and the
result is

εk =
~2k2

2m
− α

(
~ωl +

~2k2

12m

)
≡ −α~ωl +

~2k2

2mpol

where α has been introduced in the previous section as the polaron constant while

mpol =
m

1− α/6
≈ m(1 + α/6).

All these considerations are good only when α� 1. We have

Material α
InSb 0.015
InP 0.080

CdTe 0.39
CdS 0.65

Consequently, the interaction for the two last materials is strong and one cannot use the
perturbation theory in the simplest way. The qualitative conclusions are that interaction
with phonons leads to the shift of the energy levels (the relative shift is α at α � 1) and
to its ”dressing” - increase of the effective mass.

6.8 Galvano- and Thermomagnetic Phenomena

The Physical Reason

The external magnetic field distort electron trajectories. Its influence is strong if the
characteristic radius of cyclotron orbit, rc = v⊥/ωc, is less than the mean free path ` at
which all the kinetic coefficients are formed. One can treat the distortion as an effective
decrease of the mean free path `. To estimate the influence of a weak magnetic field on
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x

y φ

Figure 6.6: A trajectory fragment..

the resistance one can compare the path between two scattering centers along the circle
rcφ (see Fig. 6.6) with the distance 2rc sinφ/2. The difference is ∼ rcφ

3. If we put rcφ ∼ `
we get

∆ρ/ρ ∼ (`/rc)
2 ∼ (ωcτ)2 .

Another effect that one can expect is the creation of a current perpendicular to the electric
and magnetic field direction. Indeed, under the influence of magnetic field an electron
moves in the [E×H] direction by the distance

∼ rc(1− cosφ) ≈ (1/2)rcφ
2 ∼ `(`/rc) ∼ `(ωcτ) .

As a result, one can expect creation of off-diagonal components of the conductivity tensor
with

|σxy| ∼ σ0(ωcτ) .

To get the results in strong magnetic fields is more tricky and we will do it later.

Conductivity Tensor. Calculations.

Simplified version for isotropic case

In a magnetic field the Boltzmann equation reads{
(v∇r)− e

(
E +

1

c
[v ×H]

)
∇p

}
f +

f − f0

τtr

= 0 .

We look for a solution as

f = f0 + (v ·G) , |G| ∝ E .

We have (
−e
c
[v ×H]

∂

∂p
+

1

τtr

)
(v ·G) = e

∂f0

∂ε
(E · v) . (6.48)
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As we’ll check, for a given ε the vector G is independent of the direction of p and depends
only on the energy ε = p2/2m. Since ∂ε/∂p = v we have

∂(v ·G)

∂p
=

G

m
+ v

(
v · dG

dε

)
.

Since

[v ×H] · v
(

v · dG
dε

)
= 0

we get
µ

c
([v ×H] ·G) + (v ·G) = eτtr(v · E)

∂f0

∂ε
(6.49)

where

µ(ε) =
|e|τtr(ε)

m
(6.50)

is the partial electron mobility. It is natural to look for a solution of the equation (6.49)
in the form

G = αE + βH + γ[H× E] .

Substitution this form to (6.49) and using the equality ([v ×H] ·H) = 0 we get

α
µ

c
([v ×H] · E) + γ

µ

c

{
(H · E)(v ·H)−H2(v · E)

+α(v · E) + β(v ·H) + γ(v · [H× E])} = eτtr(v · E)
∂f0

∂ε
.

Then we can collect the coefficients at (v · E), (v ·H) and (v · [H× E]). We have

α− γµ
c
H2 = eτtr

(
∂f0

∂ε

)
,

γ
µ

c
(HE) + β = 0 ,

α
µ

c
+ γ = 0 . (6.51)

As a result, (Problem 6.8)

G = eτtr
∂f0

∂ε

E + (µ/c)2(HE) ·H + (µ/c)[E×H]

1 + µ2H2/c2
. (6.52)

The quantity µH/c is nothing else than the product ωcτtr We see that in the presence of
magnetic field there is a current along the direction of [E×H]. The conductivity tensor is
easily calculated from the expression

ji = −e
∫

2d3p

(2π~)3
vi
∑
k

vkGk .
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For an isotopic spectrum, we get σzz = σ0,

σxx = σyy =
ne2

m

〈
τtr

1 + ω2
cτ

2
tr

〉
,

while

σxy = −σyx =
ne2

m

〈
ωcτ

2
tr

1 + ω2
cτ

2
tr

〉
.

Here the average 〈A〉 is understood as

〈A〉 ≡
∫
A(p)(−∂f0/∂ε) (dp)∫

(−∂f0/∂ε) (dp)
.

Note that denominaator of this expression is nothing else then thermodynamic density of
states,

gT ≡ ∂ne/∂ζ (6.53)

where ne is the electron density while ζ is the chemical potential.

General case 5

In the presence of a magnetic field, see Sec. 3.7.1, it is convenient to introduce two different
variables instead of px and py – the energy ε and the “trajectory time” defined as

t1 =
c

eH

∫
dl

v⊥
. (6.54)

This is not a real time, but rather a function of p defined by the equation of motion
ṗ = −(e/c)[v ×H]. According to our previous treatment,∫

dpx dpy =

∫
dε

∫
dl/v⊥ or

∫
dpx dpy dpz =

eH

c

∫
dt1 dε dpz .

In the presence of external fields the l.h.s. of the Boltzmann equation can be written as

∂f

∂t1

∂t1
∂t

+
∂f

∂pz

∂pz
∂t

+
∂f

∂ε

∂ε

∂t

where we consider the quantities t1, pz, ε as independent variables. Since

∂ε

∂t
= v · dp

dt
= −v ·

(e
c
[v ×H] + eE

)
= −e(v · E) ,

dpz
dt

= −eEz ,

and in a weak (comparing to vH/c) electric field ∂t1/∂t = 1 we arrive at the Boltzmann
equation

∂f

∂t
− eEz

∂f

∂pz
− e(v · E)

∂f

∂ε
= Icol(f) . (6.55)

5Optional section
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As usual, we search the solution as

f = f0 + a

(
−∂f0

∂ε

)
.

The function f0 depends only on the energy, and we get in the linear approximation

∂a

∂t1
− I(a) = −e(v · E) . (6.56)

We should solve this equation with proper boundary conditions. In the case of closed orbits
it is just the periodicity while for open orbits the function should be finite. We need to
analyze the solution of this equation in different cases.

To make estimates we use the relaxation time approximation to get

∂a

∂t1
+
a

τ
= −e (v(t1) · E) . (6.57)

The general solution is

a(t1) =

∫ t1

c

−e (v(t2) · E) e−(t1−t2)/τ dt2.

If the orbits are closed one should apply the periodic conditions

a(t1) = a(t1 + T )

In this case one has to put c = −∞ (Problem 6.11). The electric current is

ji = −e
∫
vif (dp) = − 2e2H

(2π~)3c

∫
dε

(
−∂f0

∂ε

)∫
dpz dt1 via(ε, pz, t) =

= − 2e3H

(2π~)3c

∫
dε

(
−∂f0

∂ε

)∫ pF

−pF
dpz

∫ T
0

dt1 vi(t1)

∫ t1

−∞
dt2
∑
k

vk(t2)e−(t1−t2)/τEk.

We see that the conductivity is a tensor with the components

σik = − 2e3H

(2π~)3c

∫
dε

(
−∂f0

∂ε

)∫ pF

−pF
dpz

∫ T
0

dt1 vi(t1)

∫ t1

−∞
dt2
∑
k

vk(t2)e−(t1−t2)/τ .

Now we assume that E ⊥ H and i, k are x, y-components. If the spectrum is isotropic,

vx = v⊥ cosωct1, vy = −v⊥ sinωct1, ωc = −eH
mc

.

Now we can extract v⊥ and analyze{
Ix
Iy

}
=

∫ T
0

dt1

{
cosωct1
− sinωct1

}∫ t1

−∞
dt2 e

−(t1−t2)/τ (Ex cosωct2 − Ey sinωct1)
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It is convenient to employ an auxiliary integral∫ t1

−∞
dt2 e

t2/τ eiωct2 = et1/τ eiωct1
τ−1 − iωc
τ−2 + ω2

c

=

= et1/τ
1

τ−2 + ω2
c

[
(τ−1 cosωct1 + ωc sinωct1) + i(τ−1 sinωct1 − ωc cosωct1)

]
.

Finally, we come to the integral{
Ix
Iy

}
=

∫ T
0

dt1

{
cosωct1
− sinωct1

}
×

×
[
Ex(τ

−1 cosωct1 + ωc sinωct1)− Ey(τ−1 sinωct1 − ωc cosωct1)
]
.

Finally we get{
jx
jy

}
= − 2e3H

(2π~)3c

T
2

∫
dε

(
−∂f0

∂ε

)
1

τ−2 + ω2
c

{
τ−1Ex + ωcEy
−ωcEx + τ−1Ey

}∫
dpzv

2
⊥.

We have used the integrals ∫ T
0

cos2 ωct dt =
∫ T

0
sin2 ωct dt = T

2
,∫ T

0
cosωct sinωct dt = 0.

For degenerate electrons the integral over the energy locates the internal integral to the
Fermi surface, the last integral being∫ pF

−pF
v2
⊥ dpz =

1

m2

∫ pF

−pF

∫
(p2
F − p2

z) dpz =
4

3

p2
F

m2
.

The final result is

σ̂⊥ =
nee

2

m

1

τ−2 + ω2
c

(
τ−1 ωc
−ωc τ−1

)
.

Weak Magnetic Field

In weak magnetic fields, when
ωcτ � 1

we get

σ̂⊥ = σ0

(
1 ωcτ
−ωcτ 1

)
.

The typical configuration to measure off-diagonal components of the conductivity tensor
is shown in Fig. (6.7). In general

jx = σxxEx + σxyEy,
jy = σyxEx + σyyEy.

(6.58)
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Figure 6.7: Arrangement to measure off-diagonal conductivity components.

If the circuit in y-direction is open we have jy = 0. As a result, a field

Ey = −σxy
σxx

Ex (6.59)

appears, the current density being

j = jx = ρxxEx =
σ2
xx + σ2

xy

σxx
Ex.

We have taken into account that

σxx = σyy, σxy = −σyx.

Thus,

Ey = − σxy
σ2
xx + σ2

xy

j.

The creation of a transverse field directed along [E×H] is called the Hall effect. The Hall
coefficient is defined as

R =
Ey
Hjx

= − σxy
(σ2

xx + σ2
xy)H

.

As we see, at weak magnetic field

R = − ωcτ
Hσo

=
1

neec
. (6.60)

We came to the conclusion that the Hall coefficient depends only on the electron density.
It is not the case in real materials because we have canceled the factor τ which in real
life depends on the energy, directions, etc. In non-degenerate semiconductors the Hall
coefficient becomes dependent on the scattering mechanisms. Usually, it is taken into
account by introduction the Hall factor in Eq. (6.60). The resistivity component ρxx = 1/σ0

in a weak field because |σxy| � σxx.
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High Magnetic Field.

The results obtained above can be used to get estimates also in the case of high magnetic
fields. But we will make more rigorous calculations because many results can be obtained
for an arbitrary energy spectrum.

First, we introduce a specific perturbation theory to solve the Boltzmann equation in
strong magnetic fields, i.e. expansion in power of γ = (ωcτ)−1. We write the function a as

a =
∑
k

ak, ak ∼ γk

and substitute the Boltzmann equation (6.56)

∂a0/∂t1 = 0 ,

∂a1/∂t1 − I(a0) = −e(vE) ,

∂a2/∂t1 − I(a1) = 0 , . . .

The solutions are:

a0 = C0 ,

a1 =

∫ t1

0

[I(C0)− e (v(t2)E)] dt2 + C1 , . . .

ak =

∫ t1

0

[I(ak−1)− e (v(t2)E)] dt2 + Ck . . .

Then we average all the equations over the time taking into account that ∂a/∂t1 = 0. As
a result,

−I(a0) = −e(vE), I(ak 6=0) = 0.

These equations determine the constant items Ci. Now we proceed with calculation of the
conductivity tensor.

Closed Orbits

In this case vx = vy = 0, and C0 depends only on vzEz. Consequently, we are interested in
a1 and we can substitute

dpx
dt

= −e
c
vyH,

dpy
dt

=
e

c
vxH. (6.61)

As a result,

a1 =
c

H

∫ t1

0

dt2

(
Ey
dpx
dt2
− Ex

dpy
dt2

)
− e

∫ t1

0

dt2 vz(t2)Ez + const(v) .
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Now it is very simple to calculate σxy. Let us calculate, say, jx for the Fermi gas. We have

jx =
2He2

(2π~)3c

∫
dpz

∫ T
0

vx(t1)a1 dt1 =
2e

(2π~)3

∫
dpz

∫ T
0

a(t1)
dpy
dt1

dt1

=
2e

(2π~)3

∫
dpz

[∫ T
0

dt1 (px(t1)− px(0))Ey
c

H

dpy
dt1

+ vanishing items

]
.

The result is

σxy =
2ec

(2π~)3H

∫
dpz

∫ T
0

dt1 px
dpy
dt1

=
2ec

(2π~)3H

∫
dpz

∮
px dpy︸ ︷︷ ︸ .

volume

The result can be expressed through the densities of electron-like and hole-like excitations:

σxy = −ec
H

(ne − nh).

The physical reason is that the Lorenz force has different signs for electrons and holes and
the Hall effect feels the sign of charge carriers. It is very important that the result is
independent on scattering mechanisms and the shape of the surfaces ε = const. Actually,
it is the most common way to determine the carriers’ density.

Another conclusion is that there is no linear in γ contributions to the diagonal com-
ponents of the conductivity tensor. Finally, we come to the following structure of the
conductivity tensor

σik =

 γ2axx γaxy γaxz
γayx γ2ayy γayz
γazx γazy azz


while the resistivity tensor ρ̂ = (σ̂)−1 is

ρik =

 bxx γ−1bxy bxz
γ−1byx byy byz
bzx bzy bzz

 .

The case of compensated materials with ne = nh (like Bi) needs a special treatment.

Note that the components of the conductivity tensor should meet the Onsager principle
which in the presence of the magnetic field reads as

σik(H) =σki(−H)

(the reason is that the Onsager principle is derived by use the symmetry with respect to
time reversion. Under such a transform magnetic field changes its sign).
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Figure 6.8: The case of open orbits..

Open Orbits

The case of open orbits is more tricky. To understand what happens let us consider the
case shown in Fig. 6.8. We observe that the trajectory in pz-direction is infinite while in
py direction it is finite. Taking the average of the equations of motion (6.61) we get

vy = − c

eH
lim
T1→∞

[
px(T1)− px(0)

T1

]
6= 0, vx = 0.

As a result, the quantity a0 contains a component ∝ Ey, and the component σyy is not
small. As a result,

σik =

 γ2axx γaxy γaxz
γayx ayy ayz
γazx azy azz

 .

One can see from Fig. 6.8 that the conductivity tensor strongly depends on the tilt angle of
the magnetic field, having a sharp crossover at θ → 0. The schematic angular dependencies
of the Hall coefficient and transverse resistivity are shown in Fig. 6.9. .

Thermomagnetic Effects.

It is clear that the temperature gradient also produces electric currents, and a magnetic
field leads to off-diagonal transport. As we have seen these currents are produced by the
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Figure 6.9: Crossover from closed to open orbits.

”effective force” (ε − ζ)∇T/T . As a result, all the kinetic coefficients become tensors.
According to the Onsager principle

ρik(H) =ρki(−H), κik(H) =κki(−H), Πik(H) =Tαki(−H).

Consequently, we have 36 kinetic coefficients which obey 15 Onsager relations. It is clear
that 21 independent components lead to a very complicated picture and usually people
study simplest cases. For example, in an isotropic material in a weak magnetic field one
can write

j = ρE +R [H× j] + α∇T +N [H×∇T ] ,

w − jζ = Πj +B [H× j]− κ∇T + L [H×∇T ] . (6.62)

According to the Onsager principle, B = NT. The expressions (6.62) describe many effects.
For example, suppose that ∇xT = 0, jy = 0, wy = 0, but jx 6= 0. In this case we get

∂T

∂y
=
B

κ
Hjx

(the Ettingshausen effect). Another effect is creation of a field Ey by the gradient ∂T/∂x
(the Nernst effect)

Ey = NH(∂T/∂x).

All these effects have important applications. In high magnetic fields all the coefficients
become field-dependent.

6.9 Shubnikov-de Haas effect

Oscillations similar to the de Haas-van Alphen effect, see Sec. 4.4, exist also for kinetic
coefficients. Although quantum transport is out of the scope of the present part of the
course we will discuss the main picture.
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Kinetic coefficients depend both on the density of states and on the scattering prob-
ability. We have have seen that DOS oscillated because of the energy quantization. The
scattering probability, in its term, is also dependent on the density of states, as well on
the scattering matrix element. Consequently, it also oscillates in magnetic field, and it
appears that the last contribution is the most important. The quantum oscillations of
conductivity is called the Shubnikov-de Haas effect. Similar oscillations are also present for
thermo.magnetic coefficients. Quantum oscillations of kinetic coefficients are widely used
for investigation of the properties of metals and semiconductors.

Let us outline main principles of these effects. To take the electric field into account
one should analyze the SE in crossed electric and magnetic field (H ‖ z, E ‖ x)

− ~2

2m

∂2ψ

∂x2
+

1

2m

(
~
i

∂

∂y
+
e

c
Hx

)2

ψ − ~2

2m

∂2ψ

∂z2
+ (eEx− ε)ψ = 0.

We can also search the solution as

ϕ(x) exp(ikyy + ikzz).

The equation for ϕ has the form

− ~2

2m

d2ϕ

dx2
+

[
1

2m

(
eH

c

)2

x2 +

(
~eH
mc

ky + eE

)
x+

~2(k2
y + k2

z)

2m
− ε

]
ϕ = 0.

The result can be expressed just in the same way as for the case E = 0 with the additional
terms

εEν = εN +
~2k2

z

2m
+ δε, δε = −a2

HeEky −
mc2

2

(
E

H

)2

for the energy and

xE0 = x0 + δx0, δx0 = −eEa
2
H

~ωc
.

for the oscillator center x0 (see Sec. 3.7.2).
Now we introduce the following concept. Assume that the electron in the state ν is is

situated at the point xE0 . The electric current is

jx = −e
′∑

ν,ν′

{
f0(εEν )

[
1− f0(εE

ν′
)
]
WE
νν′
− f0(εE

ν′
)
[
1− f0(εEν )

]
WE
ν′ν

}
.

The prime over the sum means that the state ν has xE0 < 0, while the state ν
′

has xE0 > 0.
Then we expand the expression up to the linear in E term and get

σxx = e2
∑
ν,ν′

(
−∂f0(εν)

∂εv

)
(x0 − x

′
0)2

2
Wνν′ .
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This formula has an explicit physical meaning. Indeed, the quantity

(x0 − x
′
0)2

2
Wνν′

is just the contribution of the states ν, ν
′

to the 2D diffusion coefficient in the plane (x, y).
thus we come to the old formula

σ = e2

∫
dε g(ε)D(ε)

(
−∂f0

∂ε

)
where both g(ε) and D(ε) should be calculated with the help of quantum mechanics:

g(ε) =
∑
ν

δ(ε− εν), D(ε) =
1

g(ε)

∑
ν,ν′

δ(ε− εν)
(x0 − x

′
0)2

2
Wνν′ .

One can see that the result is strongly dependent on the scattering mechanism and oscillates
in the case of the Fermi statistics.

6.10 Response to “slow” perturbations

In this section we will discuss electron response to low-frequency perturbation which vary
slowly in space.

Consider electron gas in a weak ac electric field E(r, t). Let us separate odd and even
in p parts of the electron distribution function,

f(p) = f+(p) + f−(p) , f±(−p) = ±f±(p) .

The key point of the following consideration is that the relaxation rates for the odd and
even in p components can be very much different. Indeed, elastic processes do not affect
any function dependent only on the energy, and the average distribution function

F (ε) = 〈f(p)〉ε ≡
∫

(dp) f+(p) δ(εp − ε)∫
(dp) δ(εp − ε)

is not effected by elastic scattering.
Assuming that inelastic processes are weak, we leave in the equation for f− only elastic

processes in the collision operator. As a result,

∂f−

∂t
+ v

∂f+

∂r
+ eE

∂f+

∂p
+
f−

τtr

= 0. (6.63)

Such a procedure is not correct for f+ because the main part of f+ depends only on the
electron energy. Thus one has to write

∂f+

∂t
+ v

∂f−

∂r
+ eE

∂f−

∂p
+ I{f+} = 0 , (6.64)
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where the collision operator includes inelastic processes. Now let us assume

ωτtr � 1 , q`� 1

and solve Eq. (6.63),

f−(p) = −τtrv
∂f+

∂r
− eτtrE

∂f+

∂p
, (6.65)

then substitute into Eq. 6.64 and average over the constant energy surface. One can show
that the difference between f+(p) and F (εp) can be neglected if

eEτtr � p̄ .

Neglecting this difference we arrive at the following equation for F (ε).

∂F1

∂t
−Dik(ε)

∂2F1

∂xi∂xk
+ 〈I{F1}〉ε = eDik(ε)

∂Ek
∂xi

∂f0

∂ε
. (6.66)

Here we have introduced F1 = F (ε)− f0(ε) and

Dik = 〈viτtrvk〉ε.

The typical estimate for the third term in Eq. 6.64 is F1/τin where τin is the inelastic
relaxation time. Thus the solution of Eq. (6.66) depends on the dimensionless quantities

ωτin , q2Dτin .

Because usually in semiconductors at low temperatures

τin � τtr

these quantities can be large even at ωτtr, q`� 1.

Very low frequancies, ωτin, q
2Dτin � 1.

In this case the third term in l.h.s. of Eq 6.66 is most important and one has to vanish
this term. That can be done assuming that

F1(ε, r, t) ∝ f0(ε) = A(r, t)f0(ε) .

Multiplying this equation by the density of states g(ε) and integrating over the energies
we get

A(r, t) = n(r, t)/n0 .

Here n(r, t) is the time- and position dependent electron density. In this way (in the
isotropic case) we get

∂n

∂t
−D∂

2n

∂x2
= eD

∂Ex
∂x

(
−∂n0

∂ζ

)
. (6.67)
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Here ζ is the chemical potential while

Dik =
1

n0

∫
dε g(ε) f0(ε)Dik(ε) .

Moving all the terms into l.h.s. we get instead of Eq. 6.67

∂n

∂t
+

1

e

∂

∂x

(
−eD∂n

∂x
+ e2D

∂n

∂ζ
Ex

)
= 0 . (6.68)

This is nothing else than the charge conservation law

e
∂n

∂t
+ div j = 0 .

Indeed, due to Einstein relation

σ = e2D
∂n0

∂ζ

we have a usual expression for the current density’

jx = σEx − eD
∂n

∂x
.

We conclude that at
ωτin � 1, q2τtrτin � 1

one can employ very simple diffusion description of the response.
In the end of this section let us obtain a simplified expression for dielectric function

at low frequencies. Let us assume that one applies an external field with the electrical
induction

De exp(iqx− iωt) + h.c.

Then all the quantities are ∝ exp(iqx− iωt), and one obtains

j = −iq(eDn+ σφ) , (6.69)

the charge conservation law being

(−iω + q2D)n+ e−1q2σφ = 0 . (6.70)

Here n, and φ are Fourier components of the concentration and the potential, respectively.
To relate the potential φ to the external field one has to employ Poisson equation

iqD = 4πen , D = −iε0qφ+ De .

We get
ε0q

2φ+ iqDe = 4πen .
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Now we can substitute n from Eq. (6.70) as

n = −1

e

q2σ

q2D − iω
φ

to get

q2φε0
−iω + q2D + 1/τm
−iω + q2D

= −iqDe .

Here
τm ≡ ε0/4πσ

is the well known Maxwell relaxation time. Having in mind that E = −iqφ and E =
De/ε(q, ω) we get

ε(q, ω) = ε0
−iω + q2D + 1/τm
−iω + q2D

. (6.71)

As ω → 0

ε(q, 0) = ε0
q2 + κ2

q2

where

κ2 =
4πσ

ε0D
=

4πe2

ε0

∂n0

∂ζ

is the square of inverse static screening length.

6.11 “Hot” electrons

Now let us come back to the static case and discuss the difference between the function F (ε)
and the equilibrium function f0(ε). For this case let us calculate the second approximation
in the electric field. Using (6.65) for the spatially uniform case we get

eE
∂f−

∂p
+ I{f+ − f0} = 0 .

Now we can average this equation over the constant energy surface,

〈eE∂f
−

∂p
〉ε + 〈I{f+ − f0}〉e = 0 .

Substituting f− from (6.65) and neglecting the difference between f+ and its average over
the constant energy surface we get

− e2EiEk
1

g(ε)

∂

∂ε
g(ε)Dik(ε)

∂F (ε)

∂ε
+ 〈I{F (ε)}〉e = 0 . (6.72)

The first item in l.h.s. has a meaning of the power transferred from the field to the electrons
with a given energy ε. The second term is the relaxation rate for the isotropic part of the
non-equilibrium distribution function.
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Let us calculate the relaxation rate of the power transferred from the field to the
electrons with a given energy. We have

〈I{F (ε)}〉e =
1

g(ε)

∫
(dp) (dp′) δ(ε− εp) [Wpp′F (εp)−Wp′pF (εp′)] .

Let us replace p→ p′ and take a symmetric combination of the expressions. We get

〈I{F (ε)}〉ε =
1

2g(ε)

∫
(dp) (dp′) [δ(ε− εp)− δ(ε− εp′)]

× [Wpp′F (εp)−Wp′pF (εp′)]

≈ 1

2g(ε)

∂

∂ε

∫
(dp) (dp′) (εp′ − εp) δ(ε− εp)

× [Wpp′F (εp)−Wp′pF (εp′)] .

Then let us take into account that

Wp′p = Wpp′ exp

(
εp − εp′
kT

)
and expand it up to the first order in the energy difference,

Wp′p = Wpp′

[
1 +

εp − εp′
kT

]
.

Expanding also the distribution function we get finally

〈I{F (ε)}〉ε = − 1

g(ε)

∂

∂ε
g(ε)

kT

τε

(
1 + kT

∂

∂ε

)
F (ε) . (6.73)

Here
1

τε(ε)
=

1

g(ε)

∫
(dp) (dp′) δ(ε− εp)Wpp′

(
εp − εp′
kT

)2

(6.74)

has a meaning of the energy relaxation rate.

Energy relaxation rate for electron-phonon scattering

To give an example let us discuss the energy relaxation rate for electron-phonon collisions.
Substituting the transition probability for the case of deformational-potential scattering
one can re-write the collision operator through a dimensionless variable x = ε/kT ,

〈I{F (ε)}〉ε = −
√
π

2τε

1√
x

d

dx
x2

(
1 +

d

dx

)
F (x) , (6.75)

where

τε =
π3/2~4ρ

4
√

2Λm5/2
√
kT

.

The typical ratio
τε
τtr

=

(
kT

s
√
mkT

)2

=
kT

ms2
� 1 .

Thus, scattering by acoustic phonons is a quasi-elastic process.
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Non-equilibrium distribution function

Now we can substitute the expression for collision operator into Eq. (6.72). Assuming
τtr(ε) = τtr(kT ) · xs we get

1√
x

d

dx

[
hxs+3/2dF

dx
+ x2

(
1 +

d

dx
F

)]
= 0 . (6.76)

Here

h ≡ 2√
π

e2EiEkDik(kT )τε
(kT )2

is the so-called heating parameter. It has a transparent physical meaning. Having in mind
Einstein relation for non-degenerate electron gas,

σ = e2n0D/kT ,

we can express h as

h ∼ σE2τε
n0kT

,

that is as the ratio of the energy absorbed during the relaxation time to the average energy.
We have (

hxs+1/2 + x2
) dF
dx

+ x2F = constant = 0 . (6.77)

Indeed, at large x the function F must vanish as well as its derivative. The general solution
of Eq. (6.77) is

F (x) = exp

(
−
∫ x

A

dξ
ξ2

ξ2 + hξ3/2+s

)
,

the constant A being determined from the normalization condition

n = kTg(kT )

∫
dx
√
xF (x) .

In many cases electron-electron scattering is very much important. To take it into
account one has to add the proper collision operator. Electron-electron collisions do not
remove the energy form the electronic system. However, they redistribute electrons between
different energy levels leading to establishment of the Maxwell distribution with some
effective temperature, Te. We arrive at the qualitative picture of heating shown in Fig. 6.10

If
τee � τε

one can think that the distribution function is ∝ exp(−ε/kTe) and substitute

F (x) ∝ exp

(
− T
Te
x

)
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Figure 6.10: Schematic representation of the carrier energy balance.

into Eq. (6.77). We get[
x2 − (hxs+3/2 + x2)

T

Te

]
exp

(
− T
Te
x

)
= 0 . (6.78)

To determine Te one can use the energy balance, i.e. multiply Eq. (6.78) by the dimen-
sionless “energy” x, integrate over x, and then solve the equation for the ratio T/Te.
Introducing new variable as, x = (Te/T )y and making integration over y we obtain the
equation for θ ≡ Te/T

θ − hθs−1/2 Γ(s+ 7/2)

Γ(4)
− 1 = 0 . (6.79)

For example, at s = 1/2
Te/T = 1 + h .

Electron heating is important in many devices. It leads to important limitations in electron
mobility, as well a to a specific time response (e. g. to the so-called “overshoot”).

6.12 Impact ionization

We have assumed earlier that the charge carrier remains in the same band. At large
fields (E ≥ 105 V/cm) this assumption breaks down. A typical process of band-to-band
impact ionization is shown in Fig. 6.11. The most common is impact ionization of shallow
impurities where the critical field is very low. Indeed, the ionization energy of shallow
impurities in Ge is about 10−2 eV, and the breakdown occurs at the fields of few V/cm.
In Fig. 6.12 I − V curves of n-Ge are shown in the temperature range 4.2-54.2 K. One
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Figure 6.11: The impact ionization process where a high energy electron scatters from a
valence band electron producing 2 conduction band electrons and a a hole.

clearly observed a threshold in the current which is masked at large temperatures as the
impurities become ionized. The onset of the breakdown is shown more clearly in Fig. 6.13
where the reciprocal Hall coefficient and Hall mobility are shown. The decrease of Hall
mobility is due to crossover to lattice scattering from the impurity one as the electron
energy increases.

The breakdown is governed by the equation

dn

dt
= AT (ND −NA) + AIn[ND − (NA + n)]

− BTn(NA + n)−BIn
2(NA + n) . (6.80)

Here AT and AI are the coefficients for thermal and impact ionization processes, BT (T,E)
is the coefficient of thermal recombination of a single electron with an ionized donor,
while BI(T,E) is the coefficient for the Auger process in which two electrons collide at an
ionized donor, one being captured with the other taking the excess energy. This term is
not important at small n. To understand the formula above note that ND − NA is the
concentration of uncompensated donors, NA + n is the concentration of ionized donors
and ND − (NA + n) is the concentration of neutral donors. The concentrations of neutral
acceptors and holes are assumed to be negligible.

At small n� NA we obtain for the steady state concentration

n0 =
AT (ND −NA)

BTNA − AI(ND −NA)
.

At a proper electric field, Eb, the denominator vanishes, this is just the breakdown point.
It can be found from the expression

BT (T,Eb)NA = AI(Eb)(ND −NA) ,
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Figure 6.12: Current-voltage curves of n-Ge at low temperatures.

it depends only on the degree of compensation NA/ND. If one defines a time constant,

τ =
n0

AT (ND −NA)
,

then Eq. (6.80) can be re-written as

−dn
dt

=
n− n0

τ
,

so the recovery from breakdown must be exponential, it has been studied experimentally.
Impact breakdown is often accompanied my instabilities of I − V curves.

6.13 Few Words About Phonon Kinetics.

In most of our consideration we have assumed the phonon distribution to be equilibrium.
Actually, phonon system form a thermal bath for electrons. Such a assumption is based
on the belief that phonons have efficient enough scattering which brings them to the equi-
librium. Consequently, the temperature T is just the temperature of the phonon system.

At the same time, phonon distribution can be non-equilibrium. In particular, it is
the case when a temperature gradient exists. To analyze the phonon kinetics one can
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Figure 6.13: Impact ionization at low temperatures in n-Ge doped by Sb (ND − NA =
2.2 × 1014 cm−3). The current density, reciprocal Hall coefficient and Hall mobility are
shown, as well as extrapolated Ohm’s law.

investigate the Boltzmann equation for phonons

∂N

∂t
+ sg

∂N

∂r
= Iph(N, f), sg ≡

∂ω

∂q

where the collision integral is determined by the scattering processes. The most important
of them are

• Phonon-phonon processes. These processes are rather complicated in comparison
with the electron-electron ones because the number of phonons does not conserve.
Consequently, along with the scattering processes (2→ 2) there are processes (2→ 1)
and (1 → 2). Scattering processes could be normal (N) or Umklapp ones. Their
frequency and temperature dependencies are different (τ−1

N ∝ Tω, τ−1
U ∝ exp(Θ/T )).

• Scattering by static defects. Usually it is the Rayleigh scattering (scattering by im-
perfections with the size less than the wave length, τ−1 ∝ ω4).

• Scattering phonons by electrons.

All these processes make the phonon physics rather complicated. We are not going to
discuss it in detail. Rather we restrict ourselves with few comments.

Probably most important phenomenon is phonon contribution to thermal conductiv-
ity. Indeed, phonon flux transfers the energy and this contribution in many cases is the
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most important. If one introduced the phonon transport relaxation time, τph, the phonon
contribution can be derived in the same way as for electrons. The result is

κph =

∫
dω ~ω gph(ω)Dph(ω)

∂Nω

∂T

where

Dph(ω) =
1

3
〈sgI−1sg〉ω

is the phonon diffusion coefficient. As we have discussed, N-processes cannot lead to finite
thermal conductivity and one take into account defect scattering, or Umklapp-processes.
Usually, the phonon thermal conductivity increases with the decrease of the temperature.
Nevertheless, at low temperatures the phonon mean free path becomes of the order of
the sample size, and boundary scattering appears very important. It is the case in many
devices of modern electronics.

In very clean materials, the impurity scattering appears ineffective both for phonons and
electrons. In this case at low temperatures (when Umklapp processes are not important)
electron and phonon systems strongly interact (electron-phonon drag). As a result, the
kinetics becomes rather complicated and very interesting.

6.14 Problems

6.1. An electron with an energy spectrum

ε(p) =
p2
x

2mx

+
p2
y

2my

+
p2
z

2mz

is placed into a magnetic field parallel to z-axis. Find the cyclotron effective mass and
compare it with the density-of-states effective mass defined as

g(ε) =

√
2m

3/2
d ε1/2

π2~3
.

6.2. Derive the Drude formula.

6.3. Assume that that the electrons obey Boltzmann statistics,

f0(ε) = exp

(
ζ − ε
T

)
,

and that
τtr(ε, T ) ∝ εr .

Expressing the transport relaxation time as

τtr(ε, T ) = τ0(T )(ε/kT )r
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find the expressions for Drude conductance at ωτ0 � 1 and ωτ0 � 1.

6.4. Compare thermopower α = η/σ for degenerate and non-degenerate electron gas.
Assume

τtr(ε, T ) = τ0(T )(ε/kT )r .

6.5. Using the Wiedemann-Franz law compare the coefficients κ and β for a typical metal.

6.6. Derive the expression (6.26) for the screened Coulomb potential.

ϕ =
Ze

r
e−r/rs ,

6.7. Derive the expression (6.27).

W (θ) = 4πniv

[
e2/ε

2ε(1− cos θ) + ~2/2mr2
s

]2

6.8. Derive Eq. (6.44) for the polarization.

6.9. Derive Eq. (6.46).

6.10. Derive the expression for the solution of the Boltzmann equation

G = eτtr
∂f0

∂ε

E + (µ/c)2(HE)H + (µ/c)[EH]

1 + µ2H2/c2
.

Use this expression to calculate the conductivity tensor.

6.11. Derive the condition c = −∞ for Eq. (6.56).

6.12. Using the expression (6.71) find imaginary part of 1/ε(q, ω) which is responsible
for damping of the wave of electrical polarization.
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Chapter 7

Electrodynamics of Metals

In this Chapter we discuss ac properties of metals.

7.1 Skin Effect.

Normal Skin Effect.

Assume that the sample is placed in an external ac electromagnetic field. The Maxwell
equations read

curl E = −1

c

∂H

∂t
, curl H =

4π

c
j.

As a starting point we assume that j = σE and consider the arrangement shown in Fig.
7.1: E ‖ y, H ‖ z, the propagation direction is x. Let all the fields be proportional to

x

E

y

zH

Metal

Vacuum

Figure 7.1: Arrangement for the calculation of the skin-effect.

exp [i(qx− ωt)] . We get the following equations

iqEy = i
ω

c
Hz, −iqHz =

4π

c
σEy.

155
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Combining these equations we get

q2 = 4πiωσ/c2 → q =
√

4πiωσ/c2 = (1 + i)
√

2πωσ/c2 = q1 + iq2.

We see that the wave dumps in the metal, the penetration depth being

δ =
1

q2

=
c√

2πωσ
. (7.1)

Usually the surface impedance is introduced as a sheet resistance of a surface layer

Z = Ey(0)/

∫ ∞
0

jy dx ≡ R− iX.

The active (R) and reactive (X) components can be measured by monitoring the amplitude
and phase of the reflected wave. The part R is responsible for the heating of the metal
(surface quenching). Using the Maxwell equations we can rewrite

Z =
Ey(0)

−(c/4π)Hz|∞0
=

4π

c

Ey(0)

Hz(0)
=

4π

c2

ω

q
.

Substituting (7.1) we get

R = X =

√
2πω

σc2
.

Anomalous Skin Effect.

Let us consider the expression (7.1) in more detail. At low temperatures σ increases and
in clean metals it can be large. So the skin depth decreases (at least at high frequencies).
On the other hand, the mean free path ` increases with the decrease of the temperature.
Finally, one can face the violation of the simple expression j = σE we have employed.
Indeed, this expression can be valid only if all the fields change slowly at the scale of `.

Now we consider the case δ � ` that leads to the anomalous skin effect (London,
1940). The picture of the fragment of the electron orbit near the surface is shown in Fig.
7.2. Only the electrons with small component vx contribute to the interaction with the
field (the other ones spend a very small part of time within the region where the field
is present). Introducing the spherical co-ordinate system with the polar axis along x we
estimate dθ ∼ δ/`, and the solid angle element being

dΩ ∼ 2π sin θ dθ ≈ 2πδ/`, (θ ≈ π/2).

The effective density of electrons participating in the interaction is

neff ∼ ne
dΩ

4π
∼ neδ/`.
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θdδ

θ
x

l

Figure 7.2: On the anomalous skin-effect.

So, we come to the conclusion that the effective conductivity should also contain the factor
∼ δ/`, while the complex coefficient cannot be determined by these simple considerations.
It can be shown by exact calculation that

σeff = σ0
ib

q`

where q is the wave vector while b ∼ 1. This estimate means that the the mean free path
` is replaced by the imaginary quantity i/q. Now we can use the expression

q =
√

4πiωσeff/c2

and get (Problem 7.1)

q =

[
4πωσ0b

c2`

]1/3

eiπ/3. (7.2)

Consequently,

δ =
1

Im q
=

2√
3

(
c2`

4πσω0b

)1/3

. (7.3)

The surface impedance could be found as

Z =
4πω

c2q
=

(
2

b

)1/3 (πω
c2

)2/3
(
`

σ0

)1/3

(1−
√

3).

We get: Z ∝ ω2/3, X = R
√

3. It is important that the conductivity σ0 enters only in
the combination σ0/` which is determined only by the electron spectrum. The typical
dependence of the surface conductance R on

√
σ0 is shown in Fig. 7.3. This dependence

is confirmed by the experiment.



158 CHAPTER 7. ELECTRODYNAMICS OF METALS

σ1/2

R-1

A

B

0

Figure 7.3: Dependence of the surface conductance on the bulk conductivity.

Finally, let us estimate the border between the normal skin effect and the anomalous
one. From the criterion δ ≈ ` we get

ω ∼ c2pF/(2πnee
2`3).

For ne ∼ 1022 cm−3, pF ∼ 10−19 g·cm/s we get

ω ∼ 10−2`−3, s−1

where ` is measured in cm. For ` ∼ 10−3 m we get ω ∼ 107 s−1. We do not demonstrate
here quite complicated procedure of solution of the Boltzmann equation.

7.2 Cyclotron Resonance

Now we consider the case where an external magnetic field is also applied. To understand
the physical picture let us look at Fig. 7.4. Assume that the field is strong enough and

rc � `.

In this case electrons move along helicoidal lines, the projection to x, y-plane being shown
in the picture. If the frequency ω of the external electromagnetic field is high and the
temperature is low the condition

δ � rc

is also met. The main physics is connected with the possibility for some electrons to
return into the skin layer while the most part of time they spend in a field-free region.
We understand that if the frequency ω equals to ωc the returning electrons are each time
accelerated by the electromagnetic field. This is the source of the cyclotron resonance in
metals (Azbel, Kaner, 1956). It is clear that the resonance condition depends on the orbit
shape and one can study the latter observing the resonance.



7.2. CYCLOTRON RESONANCE 159

ϕ

ϕ

δ

P Qm

m

r L

y

x

z,H

Figure 7.4: On the cyclotron resonance in metals.

To estimate the effect we write down the non-stationary Boltzmann equation

∂f

∂t
+
∂f

∂t1
+ v

∂f

∂r
− eEz

∂f

∂pz
− e(vE)

∂f

∂ε
= −f − f0

τ
.

where the “trajectory time” t1 was introduced by Eq. (6.54). It is important that the
relaxation time approximation is exact in this case. The reason is that the only small
group of electrons is important and ”in” term of the collision integral is much less than
the ”out” one. Consequently, in this equation

1

τ(p)
=
∑
p′

Wp,p′δ(εp − εp′).

Considfering the electric field, E as small, we put

f = f0 + a

(
−∂f0

∂ε

)
and get

∂a

∂t1
+ (−iω + τ−1)a+ v

∂a

∂r
= −e(vE) .

Now we remember the characteristic method to solve partial differential equations. Namely,
we can write

dt1 =
dx

vx
=
dy

vy
=

da

−e(vE)−(−iω + τ−1)a
.

The first two equations give the electron trajectory

r(t2)− r(t1) =

∫ t2

t1

v(t3) dt3.
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It corresponds to the instant position of the electron which feels the field E (r(ti)) . As a
result, we get the equation

∂a

∂t1
+ (−iω + τ−1)a = −ev(t1)E (r(t1))

The solution is

a(r,t1) = −e
∫ t1

c

v(t2)E (r(t2)) exp
[
(−iω + τ−1)(t2 − t1)

]
dt2

where the integration constant can be taken from the boundary conditions. As we have
seen, if the orbit does not touch the surface one can put c = −∞.1 It is important, that
we are interested in the function a at a given point r at the time t1. So we should pick up
the electrons with

r(t2) = r+

∫ t2

t1

v(t3) dt3.

Now we come to the result for the current

ji = e2

∫
(dsF ) vi

∑
k

∫ t1

−∞
vk(t2)Ek (r(t2)) exp

[
(−iω + τ−1)(t2 − t1)

]
dt2. (7.4)

This is the general formula and we need to specify all the dependencies. We will not do
all the calculations. Rather we will make the order-of-magnitude estimates.

Consider the orbit depicted in Fig. 7.4. If we introduce the maximal angle ϕm for

δ

2φm
x

Figure 7.5: Surface orbits.

effective interaction region, we get

δ = rc(1− cosϕm), or rcϕ
2
m ∼ δ → ϕm ∼

√
δ

rc
.

1The electrons which touch the surface are not important for the resonance, they produce a background
current.
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The length of the orbit inside the skin layer is ≈ 2rcϕm, the duration time being 2rcϕm/vy.
This is very short period in comparison with the total time T =2π/ωc between successive
excursions to the interaction region. As a result,

∫ t1
−∞ in Eq. (7.4) splits into the sum of

the contributions corresponding to each excursion. It is important, that the only difference
between the contributions is the factors exp(−kw) where

w = T (τ−1 − iω) (7.5)

while k = 1, 2, . . . Finally, the integral is proportional to

(2rcϕm/vy)(1 + e−w + e−2w + . . .) =
2rcϕm
vy

1

1− e−w
.

The remaining integral over the FS can be written as∫
dSF →

∫
dΩ

K(θ, ϕ)

whereK(θ, ϕ) is the so-called Gaussian curvature which is just the productK = (R1R2)−1, R1(2)

is the principal radius of curvature at the point with the direction θ, ϕ of the normal (see
Fig. 7.6).

R2

R1

dθ1

dθ2

dS

n

Figure 7.6: The definition of the Gaussian curvature.

Now we can estimate the integral. We see that the important electrons move along the
sample’s surface. So the integral over dθ is of the order of

vx max/v or (vy/v)ϕm.

Finally, after the integration over θ we get the contribution vyϕm/vK(ϕ), where K(ϕ) ≡
K(π/2, ϕ). Picking up everything, we get

ji ∼
2e2

(2π~)3

∫
dϕ

v

2rcϕm
vy

vyϕm
vK(ϕ)

vivkEk
1− e−w

.
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Substituting the estimate for ϕm we get

(σr)ik (ω,H) ∼ 2e2

(2π~)3

∫
dϕ

δ

1− e−w
nink
K(ϕ)

.

Here n ≡ v/v. In the absence of external magnetic field w → ∞ and we return to the
result

σr(ω, 0) ∼ σ0δ/`

for the anomalous skin-effect.
Now we should remember that there are electrons which reach the sample’s surface.

Most important are the ones shown in Fig. 7.5. To estimate the corresponding contribution
of these electrons we take into account that neff ∼ neϕm ∼ ne

√
δ/rc. One could write the

usual estimate for the conductivity using the effective number of electrons. But this result
appears wrong because it does not take into account that there is finite fraction of diffuse
scattering from the surface. If this fraction is β one can write

σs ∼ σ0
ϕm

1 + βµ

where µ is the number of the reflections from the surface along the path `. This factor
takes into account the momentum transfer to the surface. We have

µ ∼ `

rcϕm
∼

√
`2

δrc
� 1.

The fraction β has also the estimate β ∼ ϕm for a surface with atomic roughness. So, for
an estimate, we can put βµ ∼ `/rc � 1, and

σs ∼ σ0
ϕm
βµ
∼ σ0

ϕm
ϕmµ

∼ σ0

√
δrc
`

As a result, we see that if the factor (1− e−w)
−1

is of the order 1, and σs � σr. Then we
can proceed as follows. Introducing α ≡ σr/σs � 1 we write effective conductivity as

σeff ∼ σ0

√
δrc
`

(1 + α)

and substitute it to the self-consistent equation for the penetration depth (7.2). The result
is

δ ∼
(
c2`

ωσ0

)2/5
1

r
1/5
c

1

(1 + α)2/5

and

Z ∼ ωδ

c2
∼
( ω
c2

)3/5
(
`

σ0

)2/5
1

r
1/5
c

(
1− 2

5
α

)
.
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From this expression the ratio

Zr
Z
∼
√
δ

rc
∼
(

c2`

ωσ0r3
c

)1/5

� 1.

Now we can estimate the resonant part in more detail. To do this we should analyze
the integral

Bik =

∫ 2π

0

nink
K(ϕ)

dϕ

1− e−w(ϕ)

In the denominator we have

1− e−w = 1− exp

[
2πiω

ωc

]
exp

[
− 2π

ωcτ

]
Because ωcτ � 1 we have the resonances at ω/ωc = k where k is an integer.

The complication is that ωc depends on ϕ. To clarify the situation let us recall that
ωc = eH/mc where

m(pz) =
1

2π

[
∂S(pz, ε)

∂ε

]
εF

.

We are interested in the points where vx = 0 since only such electrons spend lonmg time
near the surface. These points are connected by the dash line in Fig. 7.7.

Figure 7.7: Momentum space geometry for the cyclotron resonance. Several orbits
(A,B,C) in planes pz = const perpendicular to the magnetic field direction are shown
on a closed Fermi surface with inversion symmetry. Most of the absorption comes from a
narow band centered about the contour (dashed line) where the velocity of the electrons
is parallel to the surface, e.g., at the two points marked 3 and 4 on the central section C,
or at those marked 1 and 2 on orbit A. These two points coalesce at the elliptic limiting
points P and Q where the velocity is parallel to the magnetic field.

The problem is that the effective mass is not constant along this line because the energy
spectrum is not quadratic. So, only small fraction of the trajectories can be important,
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i.e. the ones near the sections with maximum density of states, or with extremal effective
mass. Suppose that we are near the k-th resonance

ω = kωext, where ωext = eH/mextc.

It is the case for some magnetic field Hk. Usually the frequency is fixed while people change
the magnetic field and monitor the absorption. Thus, if ∆ ≡ (H −Hk)/Hk; we can write

ωc =
ω

k

[
1 + ∆ + b(ϕ− ϕ0)2

]
where the angle ϕ0 specifies the direction for the extremum effective mass while b is a
dimensionless constant of the order 1. In this case, expanding e−w where w is given by
Eq. (7.5) in powers of (ωcτ)−1, (ϕ− ϕ0)2, ∆ we get

1− e−w ≈ w + 2πik ≈ 2πk
[
(ωτ)−1 + ∆ + b(ϕ− ϕ0)2

]
.

The integral being determined by the vicinity of ϕ0, and we get

Bik =
ni(ϕ0)nk(ϕ0)

K(ϕ0)

∫ ∞
−∞

dx

2πika [x2 + ∆/b− i/bωcτ ]
≡ B

(0)
ik (ϕ0)I.

In fact, according to Fig. 7.7 there are 2 points of the intersection between the extreme
cross section and the line vx = 0. The integrals I are the same while one should take the
sum of the factors B

(0)
ik (ϕ0) in both points (3 and 4).

The integral I depends on the relation between the parameters ∆ and (ωτ)−1. At b > 0

I =

 −i
(

2k
√

∆b
)−1

, ∆ > 0(
2k
√

∆b
)−1

, ∆ < 0.
.

At b < 0

I =


(

2k
√

∆|b|
)−1

, ∆ > 0

i
(

2k
√

∆|b|
)−1

, ∆ < 0.

We see that the result depends on the character of extreme (maximum or minimum). The
resonant contribution is maximal at ∆ ∼ (ωτ)−1: Imax ∼ (1/k)

√
ωτ For k ∼ 1 it means

Imax ∼
√
ωcτ . Consequently, at the maximum the ratio Zr/Z acquires the extra large factor√

ωcτ , and [
Zr
Z

]
max

∼
√
δ`

rc
.

This ratio could be in principle large but usually is rather small.
The procedure employed is valid at ωcτ � 1. In the opposite limiting case the oscillatory

part of the impedance is exponentially small.
In real metals there are many interesting manifestations of the cyclotron resonance

corresponding to different properties of FS. A typical experimental picture is shown in Fig.
7.8.



7.3. TIME AND SPATIAL DISPERSION 165

Figure 7.8: Typical experimental picture of the cyclotron resonance.

7.3 Time and Spatial Dispersion

General Considerations

In general, the current density j(r,t) is determined by the electric field in the vicinity of
the point r and at previous times t1 < ṫ

j(r, t) =

∫
dV1

∫ t

−∞
dt1 σ(r− r1, t− t1) E(r1, t1) .

After Fourier transform we get

j(q, ω) = σ(q, ω)E(q, ω)

where σ(q, ω) should be analytical function of ω in the upper half-space to keep the causal-
ity. Making use of the Boltzmann equation in the relaxation time approximation we get

σik(q, ω) = e2

∫
(dp)

vivk
i(qv − ω) + τ−1

(
−∂f0

∂ε

)
.

In the case q → 0, ω → 0 we return to the expression for the static conductivity. We see
that there are 3 parameters with the dimension of frequency: qv, ω, and τ−1. At

qv, ω � τ−1

we return to the static case. In the general case we can write

1

i(qv − ω) + τ−1
=
−i(qv − ω) + τ−1

(qv − ω)2 + τ−2
=

1

qv

−i(cosϑ− ω/qv) + (qvτ)−1

(cosϑ− ω/qv)2 + (qvτ)−2
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where ϑ is the angle between q and v. The case of strong spatial dispersion corresponds to

qv̄ � ω, τ−1.

We see that σ⊥ (i.e. for the direction perpendicular to q) strongly differs from σ‖. Indeed

σ⊥ ∼ e2

∫
dε g(ε)

(
−∂f0

∂ε

)∫
sinϑ dϑ dϕ

4π

v2 sin2 ϑ cos2 ϕ

qv
πδ

(
cosϑ− ω

qv

)
∼ 3π

4

σ0

q`
.

This result is connected to the estimates which have been made in concern with the anoma-
lous skin-effect. For σ‖ and ωτ � 1 we get

σ‖ ∼ e2

∫
dε g(ε)

(
−∂f0

∂ε

)∫
sinϑ dϑ

2

v2 cos2 ϑ

qv

(qvτ)−1

(cosϑ− ω/qv)2 + (qvτ)−2
∼ 3

σ0

(q`)2
.

The limiting case
ω � qv, τ−1

is called the time dispersion one. We get next to isotropic conductivity

σ(ω) ∼ e2

∫
dε g(ε)

(
−∂f0

∂ε

)∫
sinϑ dϑ dϕ

4π

v2 sin2 ϑ cos2 ϕ

−iω
∼ − σ0

iωτ
.

If we apply the Drude formula, we get

σ(ω) = i
ε

4π

ω2
p

ω
, where ω2

p =
4πnee

2

εm
(7.6)

is the plasma frequency. This term is connected with the plasma oscillations is an electron
gas. Indeed, let us consider longitudinal oscillations. We get the Poisson equation

div D =ε div E = −4πe(δne).

Then we can apply the continuity equation,

−e∂ne
∂t

+ div j = 0→ ieω(δne) + σ(q,ω)i(qE∗) = 0.

Here
E∗ = −∇(ϕ− ζ/e) = E + (1/e)(∂ζ/∂ne)∇(δne) = E + (egT )−1iq(δne) .

As a result, we come to the equation for (δne)(
ieω − σ

egT
q2

)
(δne) + σi(qE) = 0

Consequently,

δne = −σ(q, ω)
(qE)

e[ω + iD(q, ω)q2]
, and

[
ε+ i

4πσ(q, ω)

ω + iD(q, ω)q2

]
E = 0.
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Here we have denoted

D(q, ω) =
σ(q, ω)

e2gT

As a result, we get the following dispersion law for the waves in a gas

εeff = ε+ i
4πσ(q, ω)

ω + iD(q, ω)q2
= 0.

Substituting (7.6) we get

iD(q, ω)q2 = − ε

4πe2gT

ω2
p

ω
q2 = −

ω2
p

ω
(qR)2

and come to the dispersion equation

1−
ω2
p

ω2

1

1− (ω2
p/ω

2)(qR)2
= 0.

At qR � 1 we get plasma oscillations. If we expand the relation (7.6) in powers of qv/ω
and put ω = ωp we obtain the dispersion law for plasma waves (plasmons), see Problem 7.2.

In a quasi static limiting case ω � qvF we get

εeff = ε
q2 +R−2

q2

i.e. the static screening.

The Jellium Model

Now we introduce a very simple but instructive model of the electron-ion response to the
external field. This model is very useful to treat the nature of electron-electron interaction
in superconductors, as well to make estimates.

As we have seen in the previous section, the effective dielectric function with respect
to longitudinal perturbations has the form

εeff(q, ω) = ε+ i
4πσ(q, ω)

ω + iD(q, ω)q2
.

This expression is valid for both ions and electrons and one should sum the contributions
to the conductivity. At the same time, one should remember, that the masses for electrons
and ions are different, and for important frequencies the inequality

ωi =

√
4πZe2

εM
� qvF , ω � ωp =

√
4πe2

εm
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is met. As a result, we obtain

εeff(q, ω) = ε

(
1− ω2

i

ω2
+
R−2

q2

)
= ε

(
ω2(q2 +R−2)− ω2

i q
2

ω2q2

)
or

1

εeff(q, ω)
=

1

ε

q2

q2 +R−2

(
1 +

ω2
q

ω2 − ω2
q

)
, ω2

q = ω2
i

q2

R−2 + q2
.

For long waves, ωq ∼ ωi/R ∼ vF
√
m/M , i.e. of the order of the sound velocity. We see

that the effective matrix elements of the electron-electron interaction 4πe2/q2εeff(q, ω) has
two parts - Coulomb repulsion (1st term) and attraction for small frequencies.

7.4 Electromagnetic Waves in High Magnetic Fields.

We came to the conclusion that in the absence of magnetic field an electromagnetic wave
decays in the metal. External magnetic field changes drastically the situation because
non-dissipative off diagonal part or conductivity exceeds the diagonal one.

To analyze the wave propagation one needs to solve the Maxwell equations which in
the absence of the displacement current and for the fields proportional to exp(iqx − ωt)
read as (Problem 7.3) ∑

k

(
q2δik − qiqk

)
Ek =

4πiω

c2

∑
k

σik(q, ω)Ek. (7.7)

Before starting our analysis let us specify the conductivity tensor. The Boltzmann equation
for the a-function has the form[

i(qv − ω) + τ−1
]
a+

∂a

∂t1
= −e(vE).

We see that if

qvF , ω � ωc or ω � ωc, qrc � 1

both time and spatial dispersion are unimportant, and one can use the static conductivity
tensor. The dispersion equation is

det

[
q2δik − qiqk −

4πiω

c2
σik

]
= 0. (7.8)

If the FS is closed and the numbers of electrons and holes are not equal we get

det

∣∣∣∣∣∣
q2 −4πiωc−2σxy −4πiωc−2σxz

4πiωc−2σxy q2
z −qyqz − 4πiωc−2σyz

4πiωc−2σxz −qyqz + 4πiωc−2σyz q2
y − 4πiωc−2σzz

∣∣∣∣∣∣ = 0.
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Here we have assumed that the vector q is in the (y, z)-plane, the angle (q̂, z) being θ
and have taken into account only the terms of 0-th and 1-st orders in (ωcτ)−1. Because
the largest element in the last row is σzz we come to the estimate for small enough q ∼√

4πωc−2σxy
q2 ∼ 4πωc−2σxy ∼ 4πωc−2σyz � 4πωc−2σzz.

As a result, the dispersion equation simplifies as

q2q2
z +

(
4πiωc−2σxy

)2
= 0.

Taking into account that qz = q cos θ we get

ω =
c2q2 cos θ

4π|σxy|
=

cHq2 cos θ

4πe|ne − nh|
.

According to the last row of the matrix (7.7) we have Ez � Ex, Ey. Then from the first
row we get

q2Ex − 4πiωc−2σxyEy = 0→ Ex = i cos θ Ey.

So the wave is polarized elliptically. This wave is called the helicon. There are also waves
of other kinds in metals in magnetic field.

There are different experimental methods to study electromagnetic excitations in met-
als. One of them is measurements of the surface impedance in thin plates. Changing
magnetic field people change the wavelength of the waves and it is possible to observe
resonances when the sample’s thickness is an integer times the wavelength. Another ap-
proach is to study the interference between the electromagnetic wave and the wave which
has passed through a thin plate.

7.5 Problems

7.1. Derive the equation (7.3).

δ =
1

Im q
=

2√
3

(
c2`

4πσω0b

)1/3

.

7.2. Derive the dispersion law for plasmons.

7.3. Derive the dispersion relation for electromagnetic waves in metals.

det

[
q2δik − qiqk −

4πiω

c2
σik

]
= 0.
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Chapter 8

Acoustical Properties of Metals and
Semiconductors.

8.1 Landau Attenuation.

There is another useful approach to study high-frequency properties of good conductors - to
induce an acoustic wave and measure its attenuation (or its velocity). The main advantage
is that acoustic wave propagate inside the conductors without sufficient damping.

The interaction between the acoustic waves and the electrons can be written as

δε(p, r) = Λik(p)uik(r) + eϕ(r)

where the potential ϕ should be determined from the Poisson equation. As far as for good
conductors ω � σ and q � R−1one can show that it is enough to request the neutrality
condition δne = 0 that is the same as eϕ(r) = −〈Λik(p)〉εFuik(r). As a result, we get

δε(p, r) = [Λik(p)−〈Λik(p)〉εF ]uik(r) ≡ λik(p)uik(r).

We see that it is possible to produce an effective force varying as exp(iqr−ωt) and in such
a way investigate the Fourier components of electronic response. The Boltzmann equation
for the electrons in the field of a sound wave has the form[

i(qv − ω) + τ−1
]
a =

∑
ik

λik(p)(v5)uik(r).

If we express∑
ik

λik(p)uik = i
1

2

∑
ik

λik(p)(qiuk + qkui) = i
∑
ik

λik(p)qiuk = iqλu

(where u is the displacement, λ =
∑

ik λik(p)niek, e is the polarization vector of the wave,
while n = q/q) we obtain [

i(qv − ω) + τ−1
]
a = −(qv)qλu.

171
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One can immediately express the absorbed power through the distribution function. In-
deed,

Q =

∫
(dp) ε̇ f =

∫
(dp) ε̇(p)a(p)

(
−∂f0

∂ε

)
=

∫
dε g(ε)

(
−∂f0

∂ε

)
〈ε̇(p)a(p)〉ε.

This expression should also be averaged over the period 2π/ω of the sound wave. This
average is calculated in a complex form

A(t)B(t) =
ω

2π

∫ 2π/ω

0

(
Ae−iωt + A∗eiωt

) (
Be−iωt +B∗eiωt

)
= AB∗ + A∗B = 2 Re (AB∗) . (8.1)

So, for Fermi electrons at low temperature we obtain

Q̄ = 2g(εF ) Re 〈(−iωδε)∗a〉εF = 2ωq2g(εF )λ2|u|2 Re

〈
(qv)

i(qv − ω) + τ−1

〉
εF

= 2ωq2g(εF )λ2|u|2
〈

(qv)τ−1

(qv − ω)2 + τ−2

〉
εF

.

The most interesting case is the one of the so-called short-wave sound

q`� 1

which can be met in pure conductors at low temperatures. In this case we see that only
the electrons with

qv ≈ ω → vq ≈ s (8.2)

are important. This condition has a straightforward physical meaning: because vF � s
most of electrons feel rapidly oscillating field produced by the acoustic wave, the average
interaction being small. The electrons with qv ≈ ω move in resonance with the wave and
they feel a slow varying field. The damping due to the resonant electrons is called the
Landau damping, it has been analyzed at first for plasma waves. In the Landau damping
region 〈

(qv)τ−1

(qv − ω)2 + τ−2

〉
εF

≈ π
ω

qvF
= π

s

vF
.

As a result
Q ≈ 2ωq2g(εF )λ2|u|2π s

vF
.

Usually, the attenuation coefficient is measured which is determined as

Γ =
Q

Eacs

where Eac is the energy density in the wave

Eac = 2 ρω2u(r, t)2/2 = 2ρω2|u2|
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while ρ is the crystal density. We get

Γ =
2ωq2g(εF )λ2|u|2π(s/vF )

2ρω2|u2|s
= π

g(εF )λ2

ρs2
q
s

vF
.

Since λ is of the order of a typical electron energy, for rough estimates we can put λ ∼
εF , ρs

2 ∼Mnas
2 ∼ neεF . So

π
g(εF )λ2

ρs2
∼ 1

and Γ/q ∼ s/vF � 1. The coefficient Γ characterizes spatial decay of the wave:

∂Eac
∂x

= −ΓEac .

Thus, we have proved that acoustic waves have relatively small damping.

8.2 Geometric Oscillations

The short wave regime is very useful to study the Fermi surface. Indeed, only the electrons
with v almost perpendicular to q are important. As a result, only small parts of the
electron orbit in a magnetic filed contributes to attenuation.

To illustrate the situation we analyze the case

q ⊥ H, qrc � 1, ωcτ � 1.

An electronic orbit is shown in Fig. 8.1. The dashed lined show the planes where wave’s

1 2

Figure 8.1: On the geometric oscillations.

phases are equal An electron spends different time near these planes, the longest being near
the points 1 and 2. These points are the ones where the interaction is most important.
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Now let us assume that a function is extreme for a given phase difference

ϕ =

∫ t(2)

t(1)

(qv) dt.

Then, if the number of wavelengths at the orbit’s diameter is changed by an integer n
the phase difference is changed by 2πn. Let us direct the x-axis along q. Then, from the
equation of motion

dpy
dt

=
e

c
Hvx

we obtain
ϕ =

cq

eH

[
p(2)
y − p(1)

y

]
.

Consequently, if ϕ� 1 the a-function oscillates with magnetic field, the period being

∆

(
1

H

)
=

2πe

cq

1

p
(2)
y − p(1)

y

.

In fact, the difference p
(2)
y − p(1)

y depends on pz, and genuine oscillations correspond to the

extreme cross sections with respect to p
(2)
y − p(1)

y . As a result, the oscillations are relatively
small (as in the case of the cyclotron resonance). The effect is more pronounced for open
orbits.

The geometric oscillations provide a very powerful way to measure diameters of the FS.

8.3 Giant Quantum Oscillations.

Quantum transport is out of the scope of this part of the course. Nevertheless, we will
consider a very beautiful quantum effect of giant oscillations of the sound absorption.

As we know, in a quantizing magnetic field the energy spectrum consists of the Landau
bands

ε(N, pz) = εN + p2
z/2m, εN = ~ωc(N + 1/2).

The energy-momentum conservation laws for the phonon absorption require

εN ′ + (pz + ~qz)2/2m = εN + p2
z/2m+ ~ω → ~ωc(N ′ −N) + ~pzqz/2m = ~ω.

For realistic sound frequency this condition can be met only for N ′ = N , and we get

pz = mω/qz = msq/qz = ms/ cos θ , θ ≡ ∠(q,H). (8.3)

Consequently, one can control the value of pz changing the propagation direction.
The Landau bands are shown in Fig. 8.2. The value of pz corresponding to the

condition (8.3) is denoted as p.
On the other hand, only the region near the FS (the layer of the thickness ∼ kBT )

contributes to the absorption, the corresponding regions for pz are hatched. If the value
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κΤ µ

pz
p

En
er

gy

Figure 8.2: Landau levels.

Figure 8.3: Giant oscillations of sound attenuation.

p is outside these regions, the absorption is very small. If magnetic field is changed the
regions move along the pz-axis. As a result, the attenuation coefficient Γ experiences giant
oscillations. The typical experimental picture is shown in Fig. 8.3.

The giant oscillations provide a useful tool for investigation of the FS.

8.4 Acoustical properties of semicondictors

In the previous section we discussed the case when q` � 1. However, in typical semicon-
ductor materials the opposite inequality,

q`� 1 ,

is usually met. The reason is that ionized doping impurities produce rather strong scat-
tering, and the typical electron velocity is much less than in a metal.
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The condition actually q`� 1 means that one can use a hydrodynamic approach which
we used to describe response to “slow” perturbations. Thus we can write

j = σ0E− eD∇(δn)

where δn is the variation in the electron density. In the stationary state j = 0 and

δn = − σ0

eD
ϕ .

Here φ is the electrical potential, so that

E = −∇ϕ .

In the case of piezoelectric interaction, the second relation between δn and ϕ can be
extracted from the Poisson equation

div D = 4πe(δn) . (8.4)

Here D is the electrical induction,

D = εE + 4πP

where P is the polarization created by the acoustic wave. The piezoelectric interaction
mechanism is clarified in Fig. 8.4. To get a quantitative description let us write the free
energy of the deformed crystal (at fixed electric field E) as

F̃ (T,E) ≡ F (T,D)− ED

4π
= F0 +

1

2
ciklmuikulm −

1

8π
εikEiEk + βi,klEiukl . (8.5)

Here summation over repeated subscripts is assumed, ciklm is the so-called elastic moduli
tensor while

uik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
is the strain tensor. Tensor βi,kl describes the piezoelectric interaction.

According to general principles, the stress tensor is

σik =
∂F̃

∂uik

∣∣∣∣∣
E=const

= ciklmulm + βl,kmEl . (8.6)

The electric induction is

Di = −4π
∂F̃

∂Ei

∣∣∣∣∣
uik=const

= εikEk − 4πβi,klukl . (8.7)

Now we can substitute Eq. (8.6) into the elasticity equation,

ρ
∂2ui
∂t2

=
∂σik
∂xk
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Deformed cell

Dipole moment

Equilibrium cell

Figure 8.4: A plain ionic lattice without symmetry center. After deformation “center of
gravities” of positive and negative triangle do not coincide, and as a result a dipole moment
appears. Polarization P is just the dipole moment of the unit volume.

to get

ρ
∂2ui
∂t2

= ciklm
∂ulm
∂xk

+ βl,ik
∂El
∂xk

(8.8)

This equation should be solved together with the Poisson equation (8.4) and the continuity
equation,

e
∂δn

∂t
+ div j = 0 . (8.9)

Now let us assume for simplicity that the wave is propagating along a principal axis of the
crystal (axis x). For a traveling wave all the quantities should be proportional to

exp(iωt+ iqx) .

Thus the continuity equation can be written as

(−iω +Dq2)(δn) +
σ

e
q2φ = 0 . (8.10)

As a result, one can re-write the full set of equations as

(cq2 − ρω2)u − βq2φ = 0 Elasticity
4πβq2u + εq2φ − 4π e(δn) = 0 Poisson

σq2φ + (−iω +Dq2) e(δn) = 0 Continuity
(8.11)
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A non-trivial solution of this set exists only is the determinant of the corresponding matrix
vanishes. After some straightforward algebra the secular equation can be written as

q2 − q2
0

q2

[
1 + (qR)2 − iωτm

(qR)2 − iωτm

]
= −χ , (8.12)

where q0 = ω/w = ω
√
ρ/c,

R =

[
4πe2

ε

(
∂n

∂εF

)]−1/2

is the screening length,

τm =
ε

4πσ

is the Maxwell relaxation time, while

χ =
4πβ2

εc

is the so-called piezoelectric coupling constant.
Since usually χ � 1 it is naturally to use an iteration procedure. If one puts χ = 0,

then Eq. (8.12) is decoupled into two equations. The 1st one yields

q2 = q2
0 → q = ±q0 ,

so it describes usual acoustic waves propagating along (against) the x-axis.
The 2nd one yields

q =
i

R

√
1− iωτm ,

it describes overdamped electron density waves.
In the general case it is natural to look for the solution as

q = q0 + q1 , |q1| � q0 ,

where Im q1 characterizes the (amplitude) attenuation of the wave while the power atten-
uation is

Γ = 2 Im q = 2 Im q1 .

One easily obtains
2q1

q0

= −χ (qR)2 − iωτm
1 + (qR)2 − iωτm

(8.13)

to get

Γ = χq0
ωτm

(1 + q2
0R

2)2 + (ωτm)2
. (8.14)

The qualitative picture of such a dependence is straightforward - at low frequencies there
is a compensation of electrical and diffusion current, the attenuation being proportional to
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Joule heat, ω2. At large frequencies the charge has no time to redistribute in the field of
the acoustic wave.

One can see that the dependence Γ vs. ω has a maximum at

ω = ωmax = s/R ,

the maximal attenuation being

Γmax = χ
w

R

ωmaxτm
4 + (ωmaxτm)2

This maximum depends on the product ωmaxτm reaching the absolute maximum

Γ0 = χ
s

4R

at ωmaxτm = 2. Frequency dependences of the absorption are shown in Fig. 8.5

3

2

1
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0.8

1

1 2 3 4 5
Frequency

Figure 8.5: Dependences of the reduced attenuation coefficient, Γ/Γ0, on the reduced
frequency, ω/ωmax for ωmaxτm = 2 (curve 1), 4 (curve 2) and 0.5 (curve 3).

If the sample is a part of a closed loop with the transport current density j one can
re-write the variation of the transport current as

δj = e(δn)vd , vd ≡
1

e

∂j

∂n

∣∣∣∣
E=const

.

Substituting this expression to the equations above we obtain

Γ = χq0
(ω − q0vd)τm

(1 + q2
0R

2)2 + (ω − q0vd)
2τ 2
m

. (8.15)
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Figure 8.6: Dependences of the reduced attenuation coefficient on the reduced drift velocity,
V = vd/w, for ωmaxτm = 2. Horizontal line indicates the attenuation due to defects and
lattice vibrations.

This dependence is shown in Fig. 8.6 One can see that at |vd| ≥ s the attenuation
coefficient changes its sign. That means amplification of acoustic waves by the charge
carriers drift. If the gain is larger then the attenuation due to defects and lattice vibrations,
than the sample can generate acoustic waves (phonons). Such a system placed in an
acoustic resonator is an acoustic analog of the laser.

8.5 Problems

8.1. Compare electrical and mechanical energies carried by the wave in a piezidielectric.

8.2. Find the relation between the amplitudes of electric files and deformation for the
case of acoustic wave in a piezoelectric semiconductor.

8.3. Find dc current induced by a acoustic wave in a non-degenerate piezoelectric semi-
conductor.

Hint: A dc current appears in the second approximation in the wave amplitude. Thus

jdc = 〈σE − eD(∂ δn/∂x〉time ≈ 〈(δσ)E〉 = (σ/n)〈(δn)E〉 .



Chapter 9

Optical Properties of Semiconductors

9.1 Preliminary discussion

Basic equations

The Maxwell equations (ME) for electric field, E, magnetic field H, as well as for the
corresponding inductions D = εE and B = µH read

∇× E +
1

c

∂B

∂t
= 0

∇×H− 1

c

∂D

∂t
=

4π

c
J

∇ ·D = 4πρ

∇ ·B = 0 . (9.1)

It is convenient to introduce scalar, φ and vector, A potentials as

E = −1

c

∂A

∂t
−∇φ

B = ∇×A . (9.2)

In this way we automatically meet the first and the last ME. The potentials are not unique,
they can be replaced by new ones,

A′ = A +∇χ

φ′ = φ− 1

c

∂χ

∂t
, (9.3)

without changing of the physical field, E and B. For many cases, the so-called Lorentz
gauge is convenient. In that case we put

∇ ·A′ + 1

c

∂φ′

∂t
= 0.

181
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Then one can re-write ME as

∇2A− 1

c2

∂2A

∂t2
= −4π

c
J

∇2φ− 1

c2

∂2φ

∂t2
= −4πρ . (9.4)

At J = 0 one can put ∇ ·A′ = 0, φ′ = 0, and we get the solution

A(r, t) = A0{exp[i(kr− ωt)] + c.c.} , (9.5)

the fields being

E = −2(ω/c)A0 sin(kr− ωt)
B = −2k×A0 sin(kr− ωt) . (9.6)

The Poynting vector (power flux) is

S =
c

4π
[E×H] =

1

π

ck2

√
εµ

k̂|A2
0| sin2(kr− ωt) .

Its time average is

〈S〉 = k̂
c
√
εµ

εω2

2πc2µ
|A2

0| .

Here c/
√
εµ is the velocity of light, k = ω

√
εµ/c is the wave vector of light.

The energy density is

W ≡
∣∣∣∣S√εµc

∣∣∣∣ =
εω2

2πc2µ
|A2

0| .

That can be expressed in terms of Nω photons in the volume V according to the relation

W =
~ωNω

V
.

Thus, the relation between the wave amplitude and photon density is

|A0|2 =
2π~µc2

εω

Nω

V
. (9.7)

9.2 Photon-Material Interaction

Now we can formulate a macroscopic theory of photon-material interaction. Substituting
into (9.1) J = σE and eliminating B we get the following equation for E

∇2E =
εµ

c2

∂2E

∂t2
+

4πσµ

c2

∂E

∂t
. (9.8)
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Looking for the plane wave solution now we obtain complex k,

k =
ω

c

√
εµ+ i

4πσ

ω
. (9.9)

Now it is time to introduce the complex refractive index

N = n+ iβ ,

so that

k = n
ω

c
+ iβ

ω

c
.

We have

N =

√
εµ+ i

4πσ

ω
. (9.10)

In this way, in the media placed at z > 0, the solution has the form

E = E0 exp
[
iω
(nz
c
− t
)]

exp

(
−βωz

c

)
. (9.11)

The quantity α ≡ 2βω/c is called the (power) absorption coefficient.

At the interface one has partial reflection. Consider an interface between the vacuum
and the material at z > 0. Then the solution in the vacuum is

E1 exp
[
iω
(nz
c
− t
)]

+ E2 exp
[
−iω

(nz
c

+ t
)]

,

while in the material it is given by (9.11). Matching the boundary conditions at z = 0 for
electric field

E0 = E1 + E2 .

From the continuity of the tangential component of magnetic induction we get (using ME)

(n+ iβ)E0 = E2 − E1 .

Combining the boundary conditions, we obtain

R ≡
∣∣∣∣E1

E2

∣∣∣∣2 =
(n− 1)2 + β2

(n+ 1)2 + β2
. (9.12)

Measuring α and R we find optical constants n and β.
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Drude-Zener theory

Having in mind Eq. (9.10) and putting ε = µ = 1 we can introduce the complex dielectric
function

ε(ω) = 1 + i
4π

ω
σ(ω) . (9.13)

Using the linearized Boltzmann equation and relaxation time approximation one obtains

σ(ω) ≡ σ1 + iσ2 =
σ0

1 + iωτ
, σ0 =

ne2τ

m
.

In this way the optical functions are

n2 − β2 = 1−
ω2
pτ

2

1 + ω2τ 2

nβ =
ω2
pτ

ω(1 + ω2τ )
. (9.14)

Here

ωp =

√
4πne2

m

is the plasma frequency. Let us discuss some limits of these equations Low frequencies, ωτ � 1.

(n+ β)(n− β) = 1− ω2
pτ

2

2nβ = ω2
pτ/ω .

As both n and β increase as ω → 0

n ≈ β ≈ (2πσ0/ω)1/2 .

From this expression one finds the skin depth

δ = c/ωβ = (c2/2πσ0ω)1/2 =

√
ω2
pτ

ω
.

Large frequencies, ωτ � 1

Re ε ≈ 1− (ωp/ω)2 , Im ε ≈ 1/ωτ .

At ω close to ωp (plasma edge) both n and β become very small, and the reflection coefficient
is close to unity. For the frequencies above the plasma edge the material is essentially
transparent. Frequency dependence of the reflectivity is shown in Fig. 9.1

To construct a quantum theory, one needs to allow for the conservation laws which
include both energy and momentum transfer. Thus we employ second-order perturbation
theory. The corresponding processes are shown in Fig. 9.2

One can find a discussion in the book [3], Sec. 11.10.
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Figure 9.1: Dependence of the reflection coefficient on the reduced frequency, w = ω/ωp.
Numbers near the curves indicate values of ωpτ .

Cyclotron resonance and Faraday effect

Consider propagation of a polarized light through a transparent medium containing free
electrons with the effective mass m in a magnetic field H. The simplest equation for
electron velocity, v, has the form

m

(
v̇ +

1

τ
v

)
= −eE0~η± e

iωt − e

c
v ×H . (9.15)

Here the polarization vector is

~η± =
1√
2

(1,±i, 0) .

Solving the vector set (9.15) and defining

jx = σE = −envx

we obtain

σ± = σ0
1− i(ω ± ωc)τ

(1− iωτ)2 + ω2
cτ

2
(9.16)

One can see that the absorption given by

Re σ± = σ0
1 + (ωc ± ω)2τ 2

[(1 + (ω2
c − ω2)τ 2]2 + 4ω2τ 2

=
σ0

1 + (ωc ∓ ω)2τ 2
.

is maximal (at ωcτ � 1) if ω close to ωc (cyclotron resonance). It is strongly dependent
on the polarization because σ ≈ σ0 for left-polarized wave and almost vanishes for the
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Figure 9.2: Scheme of phonon-assisted transitions. Solid curve is the electron dispersion
law. Straight solid lines show optical transitions while dashed line show transitons involving
phonons.

right-polarized one. This is the way to study the carrier’s charge because cyclotron mass
is proportional to e.

Introducing the complex refractive index,

n± = Re

{√
ε− 4π

ω
σ±

}
,

we can decouple a plane wave into a sum of left- and right- circularly polarized waves
having the phases

φ± = ω
(n±z

c
− t
)
.

Then the complex amplitude of the field is

Ex = E0 exp

(
i
φ+ + φ−

2

)
cos

(
φ+ − φ−

2

)
,

Ey = −E0 exp

(
i
φ+ + φ−

2

)
sin

(
φ+ − φ−

2

)
.

Consequently, the angle between the polarization plane the x-axis is determined from the
relation

tan θ =
Re{Ey}
Re{Ex}

= − tan

(
φ+ − φ−

2

)
.

If damping is small than one can neglect Re{σ} and express the rotation angle through
σ(i) ≡ Im{σ} as

θ =
ωd

c
(n+ − n−) =

2πd

c

2σ
(i)
− σ

(i)
+

n+ + n−
.
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As a result, we get at ω, ωc � 1/τ

θ =
πe2nHd

c2m2ω2(n+ + n−)

This expression is independent of τ and can be used to determine the effective mass.

Lattice reflectivity in polar semiconductors

Lattice reflectivity can be modeled by the oscillator equation

mẍ+mγẋ+mω2
0x = eE1 exp(−iωt) .

The dipole moment of the unit volume is

4πP = ε(ω)E1 = 4πnex =
ω2
p

ω2
0 − ω2 − iωγ

εE1 .

Here ε is a residual contribution to dielectric constant while n is the density of oscillators.
Thus

ε(ω) = ε∞ +
ω2
p

ω2
0 − ω2 − iωγ

ε . (9.17)

Introducing static dielectric constant ε0 ≡ ε(0) we get

ε(ω) = ε∞ +
ω2

0

ω2
0 − ω2 − iωγ

(ε0 − ε∞) . (9.18)

The dependence of the reflection coefficient on the reduced frequency in shown in Fig. 9.3
The minimum in that dependence corresponds to

ω

ωo
=

√
ε0 − 1

ε∞ − 1
≈
√

ε0
ε∞

.

From the Lyddane-Sachs-Teller relation

ωl
ωo

=

√
ε0
ε∞

we identify ω0 as the frequency of the transverse optical phonons, while the minimum
corresponds to longitudinal phonons.

Kramers-Kronig relation

Let us introduce complex conductivity as

j(ω) = σ(ω)E(ω) .
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Figure 9.3: Dependence of the reflection coefficient on the reduced frequency, w = ω/ω0.
Numbers near the curves indicate values of γ/ω0. ε∞ = 12, ε0 = 15.

In time representation, one can write

j(t) =

∫
dt′ σ(t− t′)E(t′) , (9.19)

and

σ(t) =
1

2π

∫ ∞
−∞

dt σ(ω)e−iωt

must be real. Thus,

σ(−ω) = σ∗(ω) , or

Reσ(−ω) = Imσ(ω), Imσ(−ω) = −Reσ(ω) .

The important point is causality and one must define

σ(t) = 0 at t < 0 .

Thus the integration limits in (9.19) should be (t,∞). Using also the property σ(ω) → 0
as ω →∞ one can prove that the function σ(ω) is regular in the ω-upper semi-plane.

Now let us consider a contour integral∮
σ(ξ) dξ

ξ − ω

along the contour shown below. The integral must vanish. Thus
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ω

Figure 9.4: Integration circuit.

P

∫
σ(ξ) dξ

ξ − ω
− iπσ(ω) = 0 .

As a result,

Reσ(ω) =
1

π
P

∫ ∞
−∞

Reσ(ξ)

ξ − ω
dξ

Imσ(ω) = − 1

π
P

∫ ∞
−∞

Imσ(ξ)

ξ − ω
dξ . (9.20)

These relations can be generalized for a dielectric function ε(ω). An important consequence
- summation rules. For example, we know that at ω � ωp β → 0, and

ε(ω)− Re ε(∞) = −ω2
p/ω

2 .

Thus

ω2
p = lim

ω→∞
{ω2[1− ε(ω)]} .

Using Kramers-Kronig relation one can show the if Im ε(ω) decays faster that ω−3 than

ω2
p =

2

π

∫ ∞
0

ξ Im ε(ξ) dξ .

9.3 Microscopic single-electron theory

The Hamiltonian has the form

H =
1

2m

[
p̂ +

e

c
A(r̂)

]2

+ eφ+ U(r) . (9.21)

An important point that momentum and co-ordinate do not commute. Using the relation

[f(r̂), p̂] = i~
∂

∂r̂
f(r̂)
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we can rewrite Eq. (9.21) as

H =
p2

2m
+

e

mc
A · p− ie~

2mc
∇ ·A +

e2

2mc2
A2 + eφ+ U(r) . (9.22)

Hereby we will use semiclassical radiation theory as most simple. Namely, we shall consider
the radiation as a classical field and use the time-dependent perturbation theory which
yields scattering rates.

Let us chose the gauge ∇A = φ = 0. Assume the radiation field to be small, such as
the linear term

|(ie~/mc)A · ∇|/|(h2/2m)∇2| ∼ eA/pc� 1 .

Thus one can decouple the Hamiltonian as H = H0 +H′ where

H0 = − ~2

2m
∇2 + U(r)

H′ =
ie~
mc

A · ∇ . (9.23)

The Fermi golden rule leads to the expressions for the scattering rate

W (i) =
2π

~
∑
f

|〈f |H′|i〉|2 δ(Ef − Ei ∓ ~ω) (9.24)

where - corresponds to photon absorption while + is for emission.
Here we have to specify in what we are interested in. If we are interested what happens

with the electrons we have of sum over the phonon distribution. It can be written as the
product N = Nωgph(ω) where

gph(ω) =
ω2

2π2~c̃3

is the photon density of states, c̃ ≡ c/
√
εµ. Thus we specify the amplitude as

|A0|2 dω =
2π~c2

ωε
Nω gph(ω) dω

to get the following expression for the transition probability with absorption,

W (a)(ω) =
4π2e2Nω gph(ω)

m2ωε

∣∣∣∣∫ d3r ψ∗p′ exp(ikr)p̂Aψ
∗
p

∣∣∣∣2 . (9.25)

Here p̂A is the projection of the electron momentum to the direction of A. Define photon
intensity as

I(ω) = V~2ωNωgph(ω)

we can write the final expression as

W (a)(ω) =
4π2e2 I(ω)

m2Vω2~2ε

∣∣∣∣∫ d3r ψ∗p′ exp(ikr)p̂Aψ
∗
p

∣∣∣∣2 . (9.26)
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For the situation when one is interested in light absorption it is necessary to sum over the
electron states. The result can be expressed through electron density of states, gel,

W (a)(ω) =
4π2e2Nω gel(Ef )

m2ωε

∣∣∣∣∫ d3r ψ∗p′ exp(ikr)p̂Aψ
∗
p

∣∣∣∣2 . (9.27)

It is important that the transition is almost “vertical”, one can neglect the photon wave
vector, and

~ω =
p2

2

(
1

me

+
1

mh

)
.

The only result of quantum theory of radiation is that it changes Nω → Nω + 1 in the
expression for the emission rate (spontaneous emission).

9.4 Selection rules

The selection rules are dependent on the matrix element

Mif =

∣∣∣∣∫ d3r ψ∗f e
ikphrp̂Aψ

∗
i

∣∣∣∣2 .
Usually one can put eikr ≈ 1 (dipole approximation). Indeed,

1

m
〈f |p|i〉 =

d

dt
〈f |r|i〉 = iωif〈f |r|i〉 , ~ωif = Ei − Ef .

When the states have Bloch form ψkl = eikrukl(r) the explicit expression for dipole matrix
element is

Mif = ~k

∫
ψ∗k′l′ψkl d

3r − i~
∫
u∗k′l′(∇ukl)ei(k−k

′)r d3r . (9.28)

Interband transitions

Bulk materials

Consider band-to-band transition in direct gap materials. The first item in r.h.s. of
Eq. (9.28) is 0 (Bloch states are orthogonal!). The last term requires k = k′ because
central-cell functions are periodic. Thus we are left with vertical transitions with matrix
elements

〈uck|pA|uvk〉
where c, v denotes conduction (valence) band. For near band-edge transitions one can use
the function in the BZ center. We have the following specification of the states

• Conduction band:
uc0 = |s〉

spherically symmetric.
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• Valence band:

– Heavy holes:

|3/2, 3/2〉 = − 1√
2

(|px〉+ i|py〉) ↑

|3/2,−3/2〉 =
1√
2

(|px〉 − i|py〉) ↓

– Light holes:

|3/2, 1/2〉 = − 1√
6

[(|px〉+ i|py〉) ↓ −2|pz〉 ↑]

|3/2,−1/2〉 =
1√
6

[(|px〉 − i|py〉) ↑ +2|pz〉 ↓]

Remember that

|px〉 =

√
3

4π
sin θ cosφ ,

|py〉 =

√
3

4π
sin θ sinφ ,

|py〉 =

√
3

4π
cos θ .

Symmetry allows the transitions

〈px|px|s〉 = 〈py|py|s〉 = 〈pz|pz|s〉 .

Thus measuring the matrix elements in the units of 〈px|px|s〉 we obtain

〈HH|px|s〉 = 〈HH|py|s〉 = 1/
√

2

〈LH|px|s〉 = 〈LH|py|s〉 = 1/
√

6

〈LH|px|s〉 = 2/
√

6 , 〈LH|pz|s〉 = 0 . (9.29)

These rules have important implications for polarization dependencies of the light absorp-
tion.

Quantum wells

The discussion above can be generalized for quantum wells. Two facts are important

• The central-cell functions are only weakly effected by confining potential.
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• The absorption at low enough frequencies is important only in the well region because
barriers have wide gaps. The states are

ψnc =
1√
AW

eikeρgnc (z)uncke

ψmv =
1√
AW

eikhρ
∑
ν

gνmv (z)uνmvkh . (9.30)

Thus we have

M2D
if =

1

AW

∑
ν

〈gνmv |gnc 〉
∫
d2ρ ei(ke−kh)r〈uνmvkh|pA|u

n
cke〉 (9.31)

For symmetric confining potentials,∑
ν

〈gνmv |gnc 〉 ≈ δnm .

The main difference is replacement of the 3D density of states

g3D
el (ε) =

√
2m3/2(ε− Eg)1/2

π~3

by its 2D analog

g2D
el

W
=

mr

π~2W

∑
nm

〈gmv |gnc 〉Θ(Enm− ~ω) , Enm = Egap + En
c + Em

v .

Here mr is reduced effective mass, m−1
r = m−1

e +m−1
h .

Before summarizing, let us introduce a relation between the scattering rate and absorp-
tion coefficient. We have,

W (a) = αc̃Nω ,

Consequently,

α =
W (a)

c̃Nω

.

Summary

Now we can give a summary for interband transitions.

Bulk semiconductors

α(~ω) =
4πe2~

m2cη(~ω)
|a · pif |2g3D(~ω) ,

gel(~ω) =

√
2(mr)

3/2(~ω − Eg)1/2

π2~3
(parabolic bands) . (9.32)
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Figure 9.5: Absorption coefficient in GaAs. Note that excitonic effect can change the
results inside the bandgap.

Here a · pif denotes the dipole matrix element, a is the polarization vector, while η is the
refractive index of the material.

Quantum Well

α(~ω) =
4πe2~

m2cη(~ω)
|a · pif |2

g2D

W

∑
nm

fnmΘ(Enm − ~ω) ,

g2D = mr/π~2 , (9.33)

fnm represent the overlap between n and m sub-band overlap functions.
The recombination rate for a bulk material is

Wem =
4πe2

m2cηωε
|a · pif |2(Nω + 1)gph(~ω) . (9.34)

The total photon density of states if photons are emitted in 3D space is

gph(~ω) =
2ω2

2π2~c̃2

where coefficient 2 allows for 2 transverse modes for each q. This expression can be easily
modified for quantum wells. Some experimental results are shown in Figs. 9.5 and 9.6

Important feature is 1/W dependence in the case of quantum well. It is a consequence
of the assumption that the wave function is localized inside the well. In real life the upper
states are spread outside the well, see Fig. 9.7.
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Figure 9.6: The same for 100 ÅGaAs/Al0.3Ga0.7As quantum well structure for in-plane po-
larized light. The HH transition is ≈ 3 times stronger than LH transition in this polariza-
tion. The higher sub-bands become closer spaced and eventually one gets bulk absorption
coefficient.

Few words about semiconductor lasers

A typical band profile to get a lasing effect is shown in Fig. 9.8 The main requirement is to
compensate losses by gain G(~ω), ΓG = αloss. Here Γ is the so-called optical confinement
factor which is just the fraction of optical intensity in the active region. We have calculated
the rates assuming that initial state is occupied but final is empty. What we need, is to
average the result in a proper way to extract relative number of such configurations. In
general, one has quasi-Fermi distributions for electrons and holes,

fe(h) =

[
1 + exp

(
±
E − µe(h)

kT

)]−1

,

the result being

G(~ω) =
4πe2

m2cηω

∫
d3p

(2π~)3
|a · pif |2

× [fe(Ee(p)) + fh(Eh(p))− 1] δ [Ee(p)− Eh(p)− ~ω] . (9.35)

Here we calculate the difference between (induced) emission and absorption rates. It can
be positive only if

fe(Ee(p)) + fh(Eh(p)) > 1

(population inversion). One gets a very similar form for a quantum well by replacement
the states |p〉 → |n,p‖〉. In general, one has also to sum over the angular momentum
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Figure 9.7: Schematic structure of wave functions.

states of the holes. In the most cases, the most important are the transitions with m = n.
The main directions to obtain lasing – increase of optical confinement, of reduced density
of states (quantum wells!!)

An important feature is the threshold current that is the product of the electron charge
eRrec where Rrec is the recombination rate due to spontaneous photon emission and non-
radiative processes. It must be as small as possible, and people try to decrease them. An
important contribution which can be optimized is Auger processes, Fig. 9.9 They can be
direct or phonon-assisted (trap-assisted, etc). Auger processes are very harmful for lasing.

Indirect interband transitions

When the energy and momentum conservation law cannot be met, then indirect transitions
come into play. Let us consider a situation when phonon energy is less than direct gap.
However, there are states at some other values of p where the energy conservation can
be met. In this case the necessary momentum can be supplied by a phonon in course of
phonon-assisted transition. One has to pay for that because this process involves 2nd order
perturbation theory.

Let us consider an example, Fig. 9.10 We have to employ the second-order perturbation
theory,

W =
2π

~

∫ ∣∣∣∣∣∑
n

〈f |Hint|n〉〈n|Hint|i〉
Ei − En

∣∣∣∣∣
2

δ(Ef − Ei)
d3p

(2π~)3
, .

The interaction Hamiltonian is a sum of the contributions of electron-photon and electron-
phonon interaction,

Hint = Hph +Hep .

Both combinations shown in Fig. 9.10 can contribute. In any case, indirect transitions
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Cladding layers

region
Active

Quantum
well active
region

Figure 9.8: Typical band profiles used for bulk (upper panel) and quantum well (lower
panel) lasers. The width of the active region dimensions in the quantum well ≤ 100 Å,
while in double heterostructure laser it is ≥ 0.1 µm.

CHCC
Auger process

Figure 9.9: A typical Auger process. A reverse one is called impact ionization.



198 CHAPTER 9. OPTICAL PROPERTIES OF SEMICONDUCTORS
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Figure 9.10: A typical indirect transition.

lead to an additional small coefficient corresponding to electron-phonon coupling. One can
trace that comparing the absorption profiles for GaAs and Si, Fig. 9.11.

9.5 Intraband Transitions

Bulk semiconductors

Intraband transitions must involve a phonon, or some other scattering mechanism. The
second-order process is very much similar to the one discussed above. It is very important
for lasers because it is responsible for losses in cladding areas.

Quantum wells

A remarkable feature - possibility of intraband (but inter-subband) transitions in the lowest
order. Consider 2 subbands with wave functions

ψi = gi(z)eikρuink(r) .

The functions gi(z) are orthogonal, while the central cell functions are essentially the same
for all the subbands. Thus

pif = − i~
W

∫
g2∗(z)e−ikρa∇g1(z)eikρ d2ρ dz .

If k is in the ρ-plane, then the matrix element is 0. However, if the light is polarized in
z-plane, then

pif = − i~
W

∫
g2∗(z)ẑ

∂

∂z
g1(z) d2ρ dz .
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Figure 9.11: Absorption coefficient of Si and GaAs.

If the states have opposite parities, then the integral is finite, and

pif ≈
~
W

.

Finally, we get

Wabs =
4π2e2Nω

m2ωε

1

W

∑
f

|pif |2δ(Ef − Ei − ~ω)f(Ei)[1− f(Ef )] .

Assuming that only one subband is filled and introducing electron concentration as

Nc =
∑
f

δ(Ef − Ei − ~ω)f(Ei)

we could obtain the result. However, in 2D case the joint density of states is infinite in the
resonance if both subbands have the same dispersion law. Usually, a Gaussian broadening
is assumed,

g(E) =
1

(1.44πσ)1/2
exp

[
−(E − E12)2

1.44σ

]
.

Physics of the broadening is rather complicated (disorder, phonon-related processes). Any
way, we get

α(~ω) =
4π2e2

m2cηω

|pif |2

W

1

(1.44πσ)1/2
exp

[
−(E − E12)2

1.44σ

]
, .

What is important that the absorption is strongly dependent on the polarization of the
incoming light. If electric field is parallel to the 2D plane then there is a weak free-electron
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Figure 9.12: Energy profile a quantum well (left panel) and schematic behavior of absorp-
tion coefficient (right panel).

absorption. The resonant absorption discussed above is possible only if the light is polarized
perpendicular to 2D gas. The selection rules (for symmetric quantum wells with isotropic
spectrum) imply that the transition can take place only between the states with opposite
parity, otherwise

pif ∝
∫
dz ψ∗M(z)

dψN(z)

dz
= 0 .

Note that this rule is opposite to the case of interband transitions.
In the wells with finite depth, there is a continuum spectrum above discrete states.

In such a situation, a properly polarized light can induce transitions from discrete to
continuum states, i. e. lead to photoionization.

Let us sketch the calculation for a rectangular well with the depth W (Fig. 9.12). For
a scattering state in the continuum spectrum, the wave function for the incoming energy
ε can be written as

ψε =


exp(ikz) + R exp(−ikz) in the region I

B exp(iKz) + C exp(−iKz) in the region II
T exp(ikz) in the region III

. (9.36)

Here

k2 =
2mε

~2
, K2 =

2m(W + ε)

~2
.

Then we have to match both the functions and their derivatives at two boundaries. For
example,

B =
2k(k +K)

(K + k)2 + (K − k)2 exp(2iKa)
.

It is clear that at small k (k � K) the coefficient B (as well as C and T ) are small. Thus
the electrons are reflected from the well. However, at Ka = sπ/2, s = 1, 2, ... we have

B = c = 1/2 .
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That means full penetration - the well behaves as Fabri-Perot resonator for de Broglie
waves. As a result, these “resonant” states are very important. Only for these states
overlap of wave functions is significant.

Now let us discuss the behavior of the absorption close to the threshold (~ω = W ), i.
e. for small ε. One can show that for the so-called non-resonant wells with

√
2mW 6= s~/a

the absorption is small and proportional to
√
~ω −W + ε1, while for the resonant ones it

is proportional to (~ω −W + ε1)−1/2.

Above we ignored frequency dependence of dielectric function which might be important
near resonant transitions. The account of these effects is beyond the scope of this course.

Interband transitions in a magnetic field

In a magnetic field, Landau levels are formed in the conduction and valence bands, the
energies (for parabolic bands) being

εn =

(
n+

1

2

)
~ωc +

p2
z

2m
; n = 0, 1, 2, . . . , (9.37)

where

ωc =
eB

mc
. (9.38)

Thus the band edge moves to give the energy gap as

Eg(B) = Eg(0) +
e~

2mr

B ,
1

mr

≡
(

1

me

+
1

mh

)
. (9.39)

Thus, the fundamental edge must be shifted ∝ B. There is also spin splitting,

∆E± = gµBBz , µB = e~/2m0c .

Now let us estimate the absorption coefficient. As it is well known, the quantum
numbers of an electron in a magnetic field are {n, py, pz}. One can easily show that because
one can neglect the photon wave vector the dipole matrix element can be expressed as

Pvc =
e

mc
A0|epvc|2δpy ,p′y δpz ,p′z δnn′ .

Thus the transition probability is

Wvc =
2π

~
e2|A0|2|epvc|2

m2c2

∑
n

∫ ∫
dpy dpz
π2~2

δ

[
~ω − Eg − (n+ 1/2)

eH

mrc
+

p2
z

2mrc

]
.
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The following calculation is straightforward. We use the following simplifications∫
dpy = LxeH/c ,∫

dpz δ

[
A− p2

z

2mr

]
= Lz

√
mr/2A .

Finally,

α =
e2ωc
m2ωnc

|epvc|2
(

2mr

~2

)3/2∑
N

1√
~ω − Eg − (~eH/mrc)(N + 1/2)

(9.40)

Thus, there are maxima at

~ωmax − Eg − (~eH/mrc)(N + 1/2) = 0 .

9.6 Problems

9.1. Calculate dipole matrix element for the transitions between the subbands in a rect-
angular quantum well of width W with infinite potential barriers. Assume that light is
polarized perpendicular to the well.

9.2. Make a similar calculation for a parabolic confinement

U(z) = (1/2)mω2z2 .

Define ω from the request that the typical spread of the ground state wave function is W
and compare the result with the case of rectangular confinement.

9.7 Excitons

In the previous discussion we employed the independent electron approximation. The
effect of other electrons enters only through the occupation probabilities without altering
eigenvalues of the electronic problem. Now we turn to the role of electron-electron (electron-
hole) interaction.

Consider a simple example.
Excitonic states are known since 1931 (Frenkel). Further work – Peierls, Wannier,

Elliot, Knox. In bulk materials the binding energy is very low and such states can be
observed only in pure materials and used for their characterization. In poorer quality
samples these states merge with band-to-band transitions.

In heterostructures, due to spatial confinement, the binding energy increases. The os-
cillator strength is also increased. Thus one observes sharp excitonic transitions. There
energy positions can be tuned by electronics and optics. Implications - high-speed modu-
lation of optical signals, optoelectronic switches, etc. In particular, one can tune exciton
transitions
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Figure 9.13: The band structure of independent electrons (left) and Coulomb electron-hole
interaction which would modify the band picture (right).

• by application of a transverse electric field (quantum confined Stark effect);

• “bleaching” of exciton transition by high electron-hole density.

9.7.1 Excitonic states in semiconductors

There are two types of excitons – Frenkel (small radius) and Wannier-Mott (large radius).
We will discuss the latters because they are relevant to semiconductors. For them we use
the effective mass theory for the envelope function,(

− ~2

2me

∇2
e −

~2

2mh

∇2
h −

e2

ε|re − rh|

)
ψex = Eψex . (9.41)

Then we introduce new co-ordinates

r = re − rh, R =
mere +mhrh
me +mh

k =
meke +mhkh
me +mh

, K = ke − kh (9.42)

to get

H =
~2K2

2(me +mh)
+

{
h2k2

2mr

− e2

2|r|

}
. (9.43)

Here mr is the reduced mass. The 1st term gives solution

ψcm = exp(iKR) .

The second leads to the hydrogen atom problem,{
h2k2

2mr

− e2

2|r|

}
F (r) = EF (r) .
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Figure 9.14: Schematic picture of an exciton in Bloch representation.

As a result

ψnK = eiKRFn(r)φc(re)φv(rh) (9.44)

where φc,v are central cell functions. The eigenvalues are

EnK = En +
~2K2

2(me +mh)
, Em = −mre

4

2ε2~2

1

n2
. (9.45)

Typically, E1 = 2− 6 meV.
We need to develop a perturbation theory to find an interaction between light and

excitons. In general,

He = H0 +
1

2

∑
i 6=j

e2

ε|ri − rj|
.

Because of translational symmetry,

ψex({ri + a}) = eiKaψex({ri}) ,

where a is the lattice vector. Thus the proper basis functions are

Φcαe;vαh (9.46)

where αc(v) ≡ {k, S} describes momentum and spin state of the electron or hole, see
Fig. 9.14. The excitonic state then can be constructed as a linear combination of the
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building blocks (9.46),

ψβex =
∑
k

Aβ(k)Φβ
c,k−K/2,Se;v,k+K/2,Sh

(9.47)

where the set of quantum numbers β ≡ {n, l,m} characterizes the energy eigenvalue index
and angular momentum indices, respectively.

Now we employ the generalized effective mass approximation assuming that the exciton
has large scale and the coefficients Aβ(k) are localized in k-space. In this way we come
back to the real space,

Fβ(r) =
∑
k

Aβ(k)eikr

which obeys the hydrogen-like equation[
Ecv(−i∇,K)− e2

ε|r|

]
Fβ(r) = EexFβ(r) . (9.48)

Here
Ecv(−i∇,K) ≡ Ec(k + K/2)− Ev(k−K/2)|k→−i∇ .

Note that ε is a quite complicated function which can strongly differ from static dielectric
function at large carrier concentrations.

In the case of simple parabolic bands the solution is simple and coincides with given
above. Namely.

Eex
n = Eg −Rex/n

2, Rex = mre
4/2~2ε2 .

The envelope ground state wave function is

F100 =
1√
πa3

ex
e−r/aex , aex = (εm0/mr)aB . (9.49)

Here aB = 0.529 Åis the Bohr radius. The typical value of aex is about 100 Å, � than
the lattice constant a.

9.7.2 Excitonic effects in optical properties

The transition rate from the ground state ψ0 to the excitonic state ψK (according to the
Fermi golden rule) is

W =
2π

~

(
eA

mc

)2

δK

∣∣∣∣∣∑
k

A(k) apcv(k)

∣∣∣∣∣
2

δ(Eex − E0 − ~ω) .

Assuming that pcv is k independent, we arrive at

W =
2π

~

(
eA

mc

)2

δK|apif |2
∣∣∣∣∣∑

k

A(k)

∣∣∣∣∣
2

δ(Eex − E0 − ~ω) . (9.50)
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From the definition, ∑
k

Aβ(k) = Fβ(0) .

Finally, for the ground state we have

W =
2π

~

(
eA

mc

)2

δK|apif |2
δ(Eex − E0 − ~ω)

πa3
exn3

. (9.51)

In a realistic case, δ-function is broadened.
An important note is that we have a selection rule K = 0. This is why the transition

is discrete even though the excitonic states are extended.
As a result, we arrive at the following picture. Inside the gap there are sharp excitonic

lines with intensities proportional to n−3. They become closer and closer as n increases.
One can introduce exciton density of states as

gex = 2(∂n/∂E) = n3/Rex .

Then it is easy to re-write the absorption coefficient α inside the gap through αF – the
absorption coefficient without excitonic effects,

α |~ω≈Eg = αF
2πR

1/2
ex

(Eg − ~ω)1/2
. (9.52)

Thus α reaches a constant at the band edge. Above the gap one can obtain

α = αF
πxeπx

sinh πx
, x =

(
Rex

~ω − Eg

)1/2

.

Far enough from the edge the result tends to the one for the absence of the excitonic
effects. A typical experimental plot is shown in Fig. 9.15 Very instructive is luminescence
at low temperatures where electrons an holes freeze out in the excitonic states. Here one
can clearly observe free excitons, as well as various bound excitons.

9.7.3 Excitonic states in quantum wells

To illustrate peculiarities of the quantum wells let us consider first a shallow H-like center
in a well 0 ≤ z ≤ a. We have to solve SE of the type

− ~2

2m
∇2Ψ− e2

ε
√
x2 + y2 + (z − z0)2

Ψ = εiΨ . (9.53)

Here we assume that the structure has the same dielectric constant of all the parts. Such
an assumption is good for heterostructures but fails for MOS systems. Also it is assumed
that the effective mass approach is valid.
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Figure 9.15: Measured absorption in GaAs at the temperatures 294, 186, 90, and 21 K. At
room temperature the excitonic transitions merge with band-to-band absorption.

The boundary conditions for infinite potential are

Ψ(0) = Ψ(a) = 0 .

Let us consider a simplified situation when

aB � a . (9.54)

Then one can neglect the item (z − z0)2 in Eq. 9.53. In this case the variables z and
ρ =

√
x2 + y2 are decoupled, and

Ψ = φ(ρ)χ(z) .

The solution of the 2D problem (see e. g. [6]) lead to eigenvalues −ε0/(i − 1/2)2 where
ε = me4/2ε2~2 is the 3D Rydberg energy. Thus

εN,i = εsN
2 − ε0

(i− 1/2)2
, εs =

π~2

2ma2
. (9.55)

According to inequality (9.54), ε0 � εs. That means that each level of size quantization
has impurity satellites. It is important that for all the N 6= 1 impurity states overlap with
continuous spectrum of lower sub-bands. Consequently, it has a finite life time even in the
absence of collisions.

In the limiting case (9.54) the energy of ground state is 4 times larger than in the 3D
case. Beyond his limit the energy is between ε0 and 4ε0, it depends on the position z0. As
a result, a sort of “impurity band” appears. Another assumption which was used is the
infinite potential. It is valid until

aB � δ =
~√

m(W − ε1)
.
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In the opposite case the calculations are rather cumbersome, especially when effective
masses within the well and the barrier are different.

Now we can re-formulate the results for the excitons. In this case SE has the form(
− e2

2me

∇2
e −

e2

2mh

∇2
h

)
Ψ− e2

ε
√

(xe − xh)2 + (ye − yh)2 + (ze − zh)2
Ψ = εexΨ . (9.56)

Under the condition (9.54) we can also drop z-dependent part of the denominator. Thus
we are left with 2D problem. It is natural to introduce new variables

R =
meρe +mhρh
me +mh

, ρ = ρe − ρh .

Consequently,
Ψ(re, rh) = ψN(ze)ψM(zh) exp(iKR)Φ(ρ) .

As a result, the equation for Φ differs from similar equation foe an impurity state by the
replacement

m→ mr =
memh

me +mh

,

and

εex = − mre
4

ε(i− 1/2)2
.

In many materials (Si, AIIIBV ) because of the presence of both light and heavy holes there
are 2 type of excitons.

In general, the Hamiltonian for relative motion has the form

H = − ~2

2mr

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2

)
− ~2

2me

∂2

∂z2
e

− ~2

2mh

∂2

∂z2
h

− e2

ε|re − rh|
+ Vew(ze) + Vhw(zh)

where Viw(zi) are confining potentials. There is no simple analytical solution for this
equation. Moreover, the parabolic approximation is usually bad for hole states in GaAlAs
heterostructures. It is also important to allow for screening. So numerical methods are
usual.

The expressions for the absorption coefficient are similar, however one must use correct
matrix elements. The important quantity is the oscillator strength defined as

fnm =
2

(2π)2mEex
nm

∣∣∣∣∫ d2k Gnm(k) apnm(k)

∣∣∣∣2 .
Here

pnm(k) =
∑
µν

∫
d2ρUν

0 (ρ)p̂Uµ
0 (ρ)

∫
dz gµn(z)gνm(k, z) (9.57)
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Figure 9.16: On the Franz-Keldysh effect.

while Gnm are the coefficients of expansion of the exciton wave function in terms of the
basis in k-space,

|ψex〉 =
∑
nm

∫
d2k |n,k〉|n,−k〉Gnm(k).

Then, as usual,

αnm =
4π2e2~
ηmcW

∑
nm

fnm δ(E
ex
nm − ~ω).

Oscillator strength is substantially increased because of exciton confinement. More exact
theoretical treatment is given e. g. in the book [6].

Quantum confined Stark effect

Consider optical absorption in the presence of an external electric field. The electrical
field pulls apart electron-hole pairs which causes the broadening of the exciton peak and
a shift of the peak to lower energies (Franz-Keldysh effect, Fig. 9.16). In heterostructures,
the most interesting is transverse field because it allows to tune exciton transitions. The
presence of the large barriers helps the electron and hole to be together and the transition
takes place up to the fields ≤ 100 kV/cm.

The electric field

1. Changes inter-subband separations;

2. Pushes electrons and holes to opposite directions making the energy sepatations
smaller. Due to the separations of electron and holes in space the exciton binding
energy decreases.

The first effect is usually much more important. Let us make a crude estimate valid at
small electric field. The Hamiltonian can be written as

H = H0 + eFz ,
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where F is the electric field. The first perturbative correction is

∆E(1) = 〈ψ1|eFz|ψ1〉 = 0

because the ground state is even. The second order correction for the ground state in a
square well is

∆E(2) =
1

24π2

(
15

π2
− 1

)
me2F 2W 4

~2
.

One has to optimize the well width W because in wide wells the absorption goes down,
the optimum being at W ∼ 100 Å.



Chapter 10

Ac transport and optics in doped
semiconductors

10.1 Impurity states

A typical energy level diagram is shown on Fig. 10.1 Shallow levels allow a universal

E
E

E
E

c

v
A

D

Figure 10.1: band diagram of a semiconductor.

description because the spread of wave function is large and the potential can be treated
as from the point charge,

U(r) = e2/εr .

To find impurity states one has to treat Schrödinger equation (SE) including periodic
potential + Coulomb potential of the defect.

Extremum at the center of BZ

Then for small k we have

En(k) =
~2k2

2m
.

We look for solution of the SE
(H0 + U)ψ = Eψ

211
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in the form
ψ =

∑
n′k′

Bn′(k
′)φn′k′(r) ,

where φn′k′(r) are Bloch states. By a usual procedure (multiplication by φ∗nk(r) and inte-
gration over r) we get the equation

[En(k) − E]Bn(k) +
∑
n′k′

Unk
n′k′Bn′(k) = 0

Unk
n′k′ =

1

V

∫
u∗nkun′k′e

i(k′−k)rU(r) dr .

Then, it is natural to assume that B(k) is nonvanishing only near the BZ center, and to
replace central cell functions u by their values at k = 0. These function rapidly oscillate
within the cell while the rest varies slowly. Then within each cell∫

cell
u∗n0un′0 dr = δnn′

because Bloch functions are orthonormal. Thus,

[En(k) − E]Bn(k) +
∑
n′

U(kk′)Bn(k′) = 0

U(kk =
1

V

∫
ei(k−bk

′)rU(r) dr = − 4πe2

εV|k− k′|2
.

Finally we get [
~2k2

2m
− E

]
Bn(k)− 4πe2

εV
∑
k′

1

|k− k′|2
Bn(k′)

where one can integrate over k in the infinite region (because Bn(k) decays rapidly.
Coming back to the real space and introducing

F (r) =
1√
V

∑
k

Bn(k)eikr

we come to the SE for a hydrogen atom,[
− ~2

2m
∇2 − e2

εr

]
F (r) = EF (r) .

Here

Et = − 1

t2
e4m

2ε2~2
, t = 1, 2 . . .

F (r) = (πa3)−1/2 exp(−r/a), a = ~2ε/me2 .

For the total wave function one can easily obtain

ψ = un0(r)F (r) .

The results are summarized in the table.
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Material ε m/m0 E1s (th.) E1s (exp.)
(meV) (meV)

GaAs 12.5 0.066 5.67 Ge:6.1 Si: 5.8
Se: 5.9 S: 6.1
S: 5.9

InP 12.6 0.08 6.8 7.28
CdTe 10 0.1 13 13.*

Table 10.1: Characteristics of the impurity centers.

Several equivalent extrema

Let us consider silicon for example. The conduction band minimum is located at kz =
0.85(2π/a) in the [100] direction, the constant energy surfaces are ellipsoids of revolution
around [100]. There must be 6 equivalent ellipsoids according to cubic symmetry. For a
given ellipsoid,

E =
~2

2m`

(kz − k0
z)

2 +
~2

2mt

(k2
x + k2

y) .

Here m` = 0.916m0, mt = 0.19m0. According to the effective mass theory, the energy levels
are N -fold degenerate, where n is the number of equivalent ellipsoids. In real situation,
these levels are split due to short-range corrections to the potential. These corrections
provide inter-extrema matrix elements. The results for an arbitrary ration γ = mt/m` can
be obtained only numerically by a variational method (Kohn and Luttinger). The trial
function was chosen in the form

F = (πa‖a
2
⊥)−1/2 exp

{
−
[
x2 + y2

a2
⊥

+
z2

a‖

]1/2
}
,

and the parameters ai were chosen to minimize the energy at given γ. Excited states are
calculated in a similar way. The energies are listed in table 10.1.

Material E1s (meV) E2p0 (meV)
Si (theor.) 31.27 11.51
Si(P) 45.5 33.9 32.6 11.45
Si(As) 53.7 32.6 31.2 11.49
Si(Sb) 42.7 32.9 30.6 11.52
Ge(theor/) 9.81 4.74
Ge(P) 12.9 9.9 4.75
Ge(As) 14.17 10.0 4.75
Ge(Sb) 10.32 10.0 4.7

Table 10.2: Donor ionization energies in Ge and Si. Experimental values are different
because of chemical shift
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Impurity levels near the point of degeneracy

Degeneracy means that there are t > 1 functions,

φjnk, j = 1, 2..t

which satisfy Schrödinger equation without an impurity. In this case (remember, k ≈ 0),

ψ =
t∑

j=1

Fj(r)φjn0(br) .

The functions Fj satisfy matrix equation,

t∑
j′=1

[
3∑

α,β=1

Hαβ
jj′ p̂αp̂β + U(r)δjj′

]
Fj′ = EFj . (10.1)

If we want to include spin-orbital interaction we have to add

Hso =
1

4mc
0c

2
[σ ×∇V ] · p̂ .

Here σ is the spin operator while V is periodic potential. In general H-matrix is com-
plicated. Here we use the opportunity to introduce a simplified (the so-called invariant)
method based just upon the symmetry.

For simplicity, let us start with the situation when spin-orbit interaction is very large,
and split-off mode is very far. Then we have 4-fold degenerate system. Mathematically, it
can be represented by a pseudo-spin 3/2 characterized by a pseudo-vector J.

There are only 2 invariants quadratic in p, namely p̂2 and (p̂ · J)2. Thus we have only
two independent parameters, and traditionally the Hamiltonian is written as

H =
1

m0

[
p̂2

2

(
γ1 +

5

2
γ

)
− γ(p̂ · J)2

]
. (10.2)

That would be OK for spherical symmetry, while for cubic symmetry one has one more
invariant,

∑
i p̂

2
iJ

2
i . As a result, the Hamiltonian is traditionally expressed as

H =
1

m0

[
p̂2

2

(
γ1 +

5

2
γ2

)
− γ3(p̂ · J)2 + (γ3 − γ2)

∑
i

p̂2
iJ

2
i

]
. (10.3)

This is the famous Luttinger Hamiltonian. Note that if the lattice has no inversion center
there also linear in p terms.

Now we left with 4 coupled Schrödinger equations (10.1). To check the situation, let
us first put U(r) = 0 and look for solution in the form

Fj = Aj(k/k)eikr , k ≡ |k| .
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The corresponding matrix lemenets can be obtained by substitution ~k instead of the
operator p̂ into Luttinger Hamiltonian. The Hamiltonian (10.2) does not depend on the
direction of k. Thus let us direct k along z axis and use representation with diagonal J2

z .
Thus the system is decoupled into 4 independent equation with two different eigenvalues,

E` =
γ1 + 2γ

2m0

~2k2, E` =
γ1 − 2γ

2m0

~2k2 .

If
γ1 ± 2γ > 0

both energies are positive (here the energy is counted inside the valence band) and called
the light and heavy holes. The effective masses are

m`(h) = m0/(γ1 ± γ) .

The calculations for the full Luttinger Hamiltonian (10.3) require explicit form of J-
matrices. It solutions lead to the anisotropic dispersion law

E`,h =
~2

2m0

{
γ1k

2 ± 4
[
γ2

2k
4

+12(γ2
3 − γ2

2)(k2
xk

2
y + k2

yk
2
z + k2

zk
2
x)
]1/2}

.

The parameters of Ge and Si are given in the Table 10.1

Material γ1 γ2 γ3 ∆ ε
Ge 4.22 0.39 1.44 0.044 11.4
Si 13.35 4.25 5.69 0.29 15.4

Table 10.3: Parameters of the Luttinger Hamiltonian for Ge and Si

The usual way to calculate acceptor states is variational calculation under the spherical
model (10.2). In this case the set of 4 differential equations can be reduced to a system of
2 differential equation containing only 1 parameter, β = m`/mh.

10.2 Localization of electronic states

What happens when the number of doping impurities is large and their wave functions
overlap?

Narrow bands and Mott transition

As a simple example, consider an ordered lattice of impurities, the potential being

V (r) =
∑
j

U(r− rj) .
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Assume that we know the eigenstates φn and eigenvalues, En, of a single-impurity problem.
Here we shall use single-band approximation, and therefore ignore Bloch (central-cell)
factors. Also, we assume the impurity bandwidth is less that the spacing between En and
restrict ourselves by the lowest level, E0. Along the tight-binding method, we cam expand
the wave functions in terms of the above eigenvalues,

ψ =
∑
j

aj φ(r− rj),
∑
j

|aj|2 = 1 ,

the energy being

E =
∑
m

eikmI(m) .

The only important property of the overlap integrals, I(m) is that it is small (tight-binding
approximation!).

In this way we get energy bands. For example, for a simple cubic lattice

E = 2I(b0)
∑
i

cos(kib0)

where here b0 denotes the lattice constant for impurity lattice. Expanding near k = 0 we
get

E(k) = 6I(b0)− I(b0)k2b2
0

the effective mass beingm∗ = ~2/2Ib2
0. As the lattice constant increases, I(b0) ∝ exp(−βb0/a)

where β is a number of the order 1.
According to our model, each impurity adds one electron, and each state possesses

2-fold spin degeneracy. Thus the impurity lattice is a metal.
Is this correct? In principle, no, because we neglected electron-electron interaction.

In fact, two electrons at the same site repel each other the energy can be estimated as
U0 ≈ e2/a. It U0 is comparable with the bandwidth ∼ I(b0), then one must allow for the
interaction. At large b0 the band is narrow and this is the case. Let us plot the electron
terms a a function of 1/b0 The insulator-to-metal transition of this kind is usually called
the Mott transition.

Anderson transition

We come back to single-electron approximation and concentrate on disorder. Suppose that
impurities are still ordered, but depths of the potential wells are random, Fig. (10.3) The
effective Hamiltonian has the form

H =
∑
j

εja
+
j aj +

∑
m,j 6=0

I(m) a+
j aj+m .

The energies ε are assumed to be uncorrelated and random, the distribution being

P (ε) =

{
1/A , |ε| < A/2
0 , |ε| > A/2
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Figure 10.2: Dependence of electron bands on impurity sublattice period b0. To the left of
point A is an insulator, to the right a metal.

Figure 10.3: Potential wells in the Anderson model.

Anderson has formulated the following criterion for localization. Let us place a particle at
the site i and study its decay in time due to quantum smearing of the wave packet. The
state is called extended if |ψi(t)|2 → 0 at t→∞.

The Anderson model has one dimensionless parameter, W/I, where I is the overlap
integral for nearest neighbors. In a 3D system there is a critical value, Ac/I, at which
delocalized states begin to appear in the middle band. In 1D case the states are localized
at any disorder. 2D case is a marginal, the states being also localized at any disorder.

Two-state model

Now let us turn to 3D case and try to discuss Anderson result in a simplified form. Namely,
consider two potential wells. When isolated, they can be characterized by the energies ε1
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Lattice xc 4/xc Ac/I
Diamond 0.43 9.3 8.0
Simple cubic 0.31 12.9 15

Table 10.4: Percolation thresholds and critical values Ac/I obtained numerically for dif-
ferent lattices

and ε2 and wave functions φ1 and φ2. At ε1 = ε2 the wave functions are

ΨI,II =
1√
2

(φ1 ± φ2),

the energy difference being EI−EII = 2I. This solution is reasonably good at |ε1−ε2| � I.
In general,

ψI,II = c1φ1 ± c2φ2 ,

and we have a matrix Schrödinger equation,(
∆/2− E I

I∗ −∆/2− E

)
.

Here the origin for energy is taken at (ε1 + ε2)/2, while ∆ ≡ ε1 − ε2. The secular equation
is thus

E2 − (∆/2)2 − |I|2 = 0 → EI,II = ±
√

(∆/2)2 + |I|2 .

Consequently,
EI − EII =

√
∆2 + 4|I|2 . (10.4)

The ratio
c1

c2

=
I

∆/2±
√

(∆/2)2 + I2
.

Thus at ∆� I either c1 or c2 is close to 1, and collectivization does not occur.
Now, following Thouless, let us chose a band

δ/2 ≤ ε ≤ δ/2, δ ∼ I

and call the sites resonant if their energy falls into the band. Then let us look for connected
resonant states which share a site. Non-resonant sites can be disregarded as I � W .

It is clear that it must be a threshold in the quantity W/I where the transition takes
place. If one assumes that the connected cluster is a 1D chain, then the bandwidth is 4I.
In such a model,

Ac
I

=
4

xc

where xc is the percolation threshold for the site problem. This is quite a good estimate,
see the Table 10.2 Finally, one arrives at the following profile of density-of-states (DOS)
for the Anderson model, Fig. 10.4



10.3. IMPURITY BAND FOR LIGHTLY DOPED SEMICONDUCTORS. 219

E-E cc E

g(E)

Figure 10.4: Density of states in the Anderson model. Localized states are shaded. Mobility
edges are denoted as Ec.

10.3 Impurity band for lightly doped semiconductors.

The material is called lightly doped if there is only a small overlap between electronic states
belonging to different impurities, Na3 � 1. Here N is the impurity concentration while a
is the localization length. In lightly doped materials conductivity vanished exponentially
as T → 0.

Let us start with a material with only one type of impurities, say n-type. At T = 0 each
of donors must have an electron, the missing electron represents an elementary excitation.
An excitation can be localized at any donor, the energies being slightly different. The
reasons are

• If one removes an electron, the remaining positive charges polarize the neutral donor
located in vicinity. That contributes to donor ionization energy, the contribution
being dependent on the configuration of neutral neighbors.

• There is a quantum overlap between the donors being excited.

The first mechanism is usually more important for realistic semiconductors having com-
pensating impurities.

Now let us assume that there are also acceptors which at capture electrons from the
donors and are fully occupied T = 0. Thus we have neutral donors, negatively charged
acceptors and an equal number of positively charged donors. Theses randomly distributed
charges create a fluctuating random potential which localizes the electronic states.

Let us count the energy εi of i-th donor from the energy of an isolated donor, −E0. We
have

εi =
e2

κ

[
acc∑
l

1

|ri − rl|
−

don∑
k 6=i

1− nk
|ri − rk|

]
.

The occupation numbers have to be determined to minimize the free energy (at T = 0 –
electrostatic energy).

A typical dependence of the Fermi level µ on the degree of compensation, K = NA/ND,
is shown in Fig. 10.5 Below we discuss limiting cases of small and large K.
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µ

Figure 10.5: Position of the Fermi level µ as a function of the degree of compensation, K.

Low degree of compensation

At K � 1 most of donors keep their electrons, and only a small number is empty and
charged positive. Each acceptor carries a negative charge, the concentration of charged
donors is equal to NA.

A positive charged hole will be located as close as possible to a negative acceptor.
Thus, it occupies the donor the most closed to an acceptor. In a first approximation, each
acceptor can be regarded as immersed in an infinite sea of donors. Transporting a hole
from a donor situated near a charged acceptor to infinity requires work of order e2/κrD,
where rD is the average distance between the donors.

To get a quantitative theory one has to add more input. Namely, there are some
acceptor without holes, and some acceptors having 2 holes. Indeed, some acceptors do not
have a close donors (Poisson distribution), so they bind holes very weakly. So holes prefer
to find another acceptor with more close donors even at the expense to become a second
hole. To illustrate the situation let us consider a configuration shown in Fig. 10.6,a. The
work necessary to remove a hole equals to

e2/κr − e2/2κr = e2/2κ,

it becomes large at small r.
It is curious that an acceptor cannot bind more than 2 holes. Consider a configuration

shown in Fig. 10.6,b. The energy of attraction to the acceptor equals
√

3e2/κl while
the repulsion energy from two other holes is 2e2/κl. We end at the following situation.
There are 3 configurations – 0-complexes (negative) where there is no ionized donor near a
particular acceptor, 1-complexes (neutral), and 2-complexes (positive). So the neutrality
condition which fixes the Fermi level is actually

N0(µ) = N2(µ) .
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Figure 10.6: Donor-acceptor configurations.

For 0-complex, there must be no donors within the sphere of radius rµ = e2/κµ from a
fixed acceptor, the probability being exp(−4πNDr

3
µ/3). Thus,

N0(µ) = NA exp

(
−4π

3

e6ND

κ3µ3

)
.

It is much more difficult to find number of 2-complexes. Let us estimate it from above,
N>

2 (µ), as a concentration of pairs of donors whose additional energies ε1 and ε2 exceed µ
when both donors are ionized. This estimate is larger because

• it could be another close donor which initiates a 1-complex,

• it can be more than one pair of donors near a given acceptor.

Let us put the origin of coordinates at acceptor site and suppose that a donor is located
at r1. The average number of donors in the element dr2 is equal to ND dr2. Thus, the
number of pairs with r2 ≥ r1 is

ND

∫
r2>r1

dr2 Θ[ε1(r1, r2)− µ]Θ[ε2(r1, r2)− µ] .

Here

ε1,2 =
e2

κ

[
1

|r1,2|
− 1

|r1 − r2|

]
.

To get the total concentration of pairs one has to multiply it by ND and integrate over r1,
and finally multiply by NA. As a result,

N>
2 (µ) = NAN

2
D

∫
dr1

∫
r2>r1

dr2 Θ[ε1(r1, r2)− µ]Θ[ε2(r1, r2)− µ] .

This estimate is very close to exact result. Integration yields

N>
2 (µ) = 7.14 · 10−4NA(4πNDr

3
µ/3)2 .

Using this estimate and solving the neutrality equation one obtains

µ = 0.61εD , εD = e2/κrD = (e2/κ)(4πND/3)1/3 .

Now let us discuss the shape of the peak. The majority of donors are far from few
acceptors, so there must be a sharp peak at −E0. The tails of g(ε) above the Fermi level
falls with the characteristic energy εD. Consequently, near the Fermi level

g(ε) ∝ NA/εD .
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Long-range potential

Above we did not take into account electrostatic interaction between the complexes. It is
small indeed because N0 � ND. However, the interaction leads to an additional dispersion
of the peak.

An average fluctuations of charge produce an average potential of order e2N
1/3
0 /κ.

We shall show that long-range fluctuations are much more important. Let us introduce
fluctuations of the complex concentrations for 0- and 2-complexes,

ξi(r) = Ni(r)− 〈Ni(r)〉 .

We consider the fluctuations as uncorrelated,

〈ξ0(r)ξ0(r′)〉 = 〈ξ2(r)ξ2(r′)〉 = N0 δ(r− r′),

〈ξ0(r)ξ2(r′)〉 = 0 .

Consequently, the charge fluctuations are

〈ρ(r)ρ(r′)〉 = 2e2N0 δ(r− r′) . (10.5)

Let us now consider a sphere of radius R where there is ∼ N0R
3 complexes. The

typical charge in the sphere is e2(N0R
3)1/2, the resultant potential being e2(N0R

3)1/2/R.
It diverges as R → ∞, and one has to allow for screening. We will check later that the
screening potential varies little over a distance between the complexes. Therefore, one can
employ the self-consistent field approximation.

As a result, we and at the Poisson equation

∆φ = −4π

κ
ρ(r)− 4πe

κ
[N2(µ+ eφ)−N0(µ+ eφ)] .

Here ρ(r) is a Gaussian random function whose correlator is given by (10.5). This approach
is consistent at

|eφ(r)| � µ

when only small number of complexes are responsible for screening. At the same time, the
majority of complexes contribute to charge fluctuations and are uncorrelated. In such a
way we obtain the equation

∆φ = −4πρ

κ
+
φ

r2
0

where the screening length r0 is given by the expression

1

r2
0

=
4πe

κ

d

dφ
[N2(µ+ eφ)−N0(µ+ eφ]φ=0 .

Substituting the expressions for the complex concentrations we obtain

r0 = 0.58N
−1/2
A N

1/6
D = 0.58N

−1/3
D K−1/2 .
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In a standard way, one can determine the distribution function near the Fermi level. It is
Gaussian,

F (eφ) =
1

γ
√
pi

exp[−(eφ)2/γ2] , γ = 2e2〈φ(r)〉2 = 0.26εDK
1/4 .

All the above results are applicable only at very small K. Indeed, to get a Gaussian
fluctuations one has to assume r0 � N

−1/3
0 or

4πN0r
3
0/3� 1 .

The condition can be rewritten as K−1/2 � 0.05.

High degrees of compensation

Now we turn to the case

1−K � 1 .

In this case, the concentration of occupied donors,

n = ND −NA � ND .

Thus all the electrons are able to find proper donors whose potential is lowered by the
potential of charges neighborhood. Thus the Fermi level is situated well below −E0, see
Fig. 10.7

E

E0

g(E)

µ

Figure 10.7: Energy diagram of highly compensated semiconductor. Solid line shows the
conduction band edge, occupied states are shaded.

To understand the structure of the DOS tail consider a certain donor having at small
(r � N−1.3

D ) another positively charged donor. Its influence at r � a is just ε = −e2/κr.
It is assumed that the second donor is empty, the binding energy being ∼ E0. Thus a pair
can contain only 1 electron.
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To find g(ε) let us calculate the concentration of pairs having the energy in the interval
(ε, ε+dε). The probability to find another donor is 4πNDr

2(dr/dε) dε, where r(ε) = e2/κε.
One has to multiply this quantity by ND and divide by 2 (pairs!) to get

g(ε) =
3

2

ε3D
ε4
ND .

Now the Fermi level (at T = 0) is easily found from the conservation law∫ µ

−∞
g(ε) dε = n .

As a result, we get

µ = − εD
21/3(1−K)1/3

.

This is purely classical result. It is valid only at rµ � a.

Long-range fluctuations

At 1 −K � 1 it is a large and important effect because screening is weak. To obtain an
estimates we can repeat the discussion for K � 1 and replace the donor concentration
by the total concentration, Nt, of donors and acceptors. In this way we get for a typical
potential energy of an electron,

γ(R) =
e2

κR
(NtR

3)1/2 .

It also diverges at large R.
How the screening takes place. The excess fluctuating density is

∆N = (NtR
3)1/2/R3 .

They can be neutralized at ∆N = n leading to the expression for the screening length,

n =
Ntr

3
s)

1/2

r3
s

→ rs =
22/3N

−1/3
t

(1−K)2/3
.

The random potential amplitude is

γ(rs) =
e2N

2/3
t

κn1/3
.

It increases with decreasing n.
Here we disregarded the states with several extra electrons which are important very

deep in the gap.
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10.4 AC conductance due to localized states

As we have seen, at low temperatures dc conductance vanishes in the insulating phase, the
electronic states being localized. However, ac conductance remains finite. The reason is
that an electron (or hole) can hop between the adjacent localized states giving rise to a
finite energy dissipation.

Deeply in the insulating phase the most probable is to find only pairs of localized states
which are separated by the distances much less than the average. To analyze the physics
of dissipation, let us consider such a pair. We used such a concept to discuss Anderson
localization.

Consider a close pair of localized states. As we have seen, the quantum states of an
electron sharing the pair can be expressed through one-center wave functions as

ψ± = c1φ1 ± c2φ2 ,

which must satisfy matrix Schrödinger equation,(
∆/2− E I

I∗ −∆/2− E

)(
ψ+

ψ−

)
= 0 .

Here the origin for energy is taken at (ε1 + ε2)/2, while ∆ ≡ ε1 − ε2. The secular equation
is thus

E2 − (∆/2)2 − |I|2 = 0 → E± = ±
√

(∆/2)2 + |I|2 .

Consequently,

E+ − E− ≡ W =
√

∆2 + 4|I|2 , (10.6)

c1

c2

=
2I(r)

∆±W
. (10.7)

Thus at ∆� I either c1 or c2 is close to 1, and collectivization does not occur.

To find the dissipation one has to calculate the contribution of a single pair, and then
sum the contributions of different pairs.

Dissipation by an isolated pair

One can discriminate between two absorption mechanisms. The first one is resonant ab-
sorption due to direct absorption of photons accompanied by transition between the states
ψ+ and ψ−. The second mechanism is due to phonon-assistant transitions – an external
field modulates the occupation numbers of close pairs. The modulation lags in phase com-
paring to the filed due to relaxation. As a result, a finite dissipation appears. Below we
consider both mechanisms.
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Resonant contribution

The resonant absorption is due to transition of an electron from the state with the energy
E− to the state E+. The energy absorbed by a pair per unit time due to an electric field

E = E0 cosωt =
1

2
E0[exp(iωt) + exp(−iωt)] (10.8)

can be written as (Fermi golden rule!):

q =
2π

~
~ω
4
|eE0〈−|r|+〉|2 δ (~ω −W ) (n− − n+) , (10.9)

Occupation numbers

The occupation numbers n± are determined from the following considerations. Let us write
down a two-site Hamiltonian

H1,2 = ε1n1 + ε2n2 +
e2

κr
n1n2 + I(r)(a+

1 a2 + a+
2 a1) . (10.10)

Here ni are the occupation numbers, while εi include Coulomb interaction with other
neighbors.

The Hamiltonian (10.10) describes 4 states of the pair:

1. The pair has no electrons. The energy E0 = 0.

2. The pair has 1 electron. There are two states with energies

E±1 =
ε1 + ε2

2
± W

2
.

3. The pair has 2 electrons. There is one state with the energy

E2 = ε1 + ε2 +
e2

κr
.

Consequently, the probability to find a pair with 1 electron, the lower level to be occupied
is

n− =
1

Z
exp

(
−E

−
1 − µ
kT

)
,

Z = 1 + exp

(
−E

−
1 − µ
kT

)
+ exp

(
−E

+
1 − µ
kT

)
+ exp

(
−E2 − 2µ

kT

)
.

The occupation number n+ = n− exp(−W/kT ), and we obtain finally,

q =
2π

~
~ω
4Z
|eE0〈−|r|+〉|2 δ (~ω −W ) exp

(
−E

−
1 − µ
kT

)[
1− exp

(
−~ω
kT

)]
, (10.11)
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Relaxational contribution

To analyze this contribution one has to consider the balance equation, say for n+(t),

∂n+

∂t
=
n+ − n0(t)

τ
. (10.12)

Here

n0(t) =
1

exp[W (t)/kT ] + 1
, W (t) =

√
[∆ + eE(t) · r]2 + 4I(r)2 , (10.13)

while τ is the population relaxation time. Substituting

n+(t) = n0(t) + n1(t) , n1(t) ∝ [e−iωt + h.c.]

one easily obtains the relevant contribution to the absorbed energy as

q =
ω

2π

∫ 2π/ω

0

dt Ẇ (t)n1(t) .

We get

q =
|eE0 · r|2

2

(
∆

W

)2
ω2τ(W, r)

1 + [ωτ(W, r)]2
1

4kT cosh(W/2kT )
. (10.14)

The last factor is just −(∂n0/∂W ).
To calculate the dissipation one has to specify the relaxation time, which depends in

general on W and r. To do that let us specify the Hamiltonian to describe coupling
between localized electrons and phonons. To construct the Hamiltonian, let us start with
the unperturbed one,

H0 =
1

2

(
∆ 2I(r)

2I(r) −∆

)
=

∆

2
σ3 + I(r)σ1 . (10.15)

Here we introduce Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Under influence of the phonon-induced strain the energy of each (j) component of the pair
acquires the term proportional to the strain tensor,

uik(rj) =
1

2

(
∂ui(rj)

∂xk
+
∂uk(rj)

∂xi

)
.

Thus,

H̃int =
1

2

∑
ik

[
Λ

(1)
ik uik(r1)− Λ

(2)
ik uik(r2)

]
σ3 , (10.16)
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where Λ
(j)
ik are the component of the deformational potential tensor for each component.

Now we can make the transformation to a new basis which makes the Hamiltonian H0

diagonal. Technically, it is convenient to rewrite (10.16) in the form

H0 =
W

2

(
cosχ sinχ
sinχ − cosχ

)
, cosχ ≡ ∆

W
.

Then one can represent the old basis through the new one as(
φ1

φ2

)
= T̂

(
ψ+

ψ−

)
, T̂ =

(
cosχ − sinχ
sinχ cosχ

)
= 1̂ cosχ− iσ2 sinχ .

Having in mind the algebra for Pauli matrices,

σ2
i = 1, σ2σ3 = iσ1, σ3σ1 = iσ2, σ1σ2 = iσ3

we obtain the interaction Hamiltonian in a new basis,

Hint = T̂−1H̃intT̂ =
1

2

∑
ik

[
Λ

(1)
ik uik(r1)− Λ

(2)
ik uik(r2)

](∆

W
σ3 −

2I(r)

W
σ1

)
. (10.17)

We are interested in the item proportional to σ1 which is responsible for phonon-assisted
transitions between the levels. Using Fermi golden rule to calculate the relaxation rate, we
get

1

τ(W, r)
=

1

τmin(W )

(
2I(r)

W

)2

. (10.18)

Here we have extracted the coordinate-dependent factor (2I(r)/W )2 = 2I0 exp(−2r/a).
The quantity τmin has a transparent physical meaning of the minimal relaxation time for
a pair with given interlevel spacing W . It is dependent on several characteristics of the
electron-phonon interaction which we do not discuss now.

Summation over the relevant pairs.

Now we can proceed adding the contributions of different pairs that appears rather tricky.
What we need is to find the so-called pair distribution function which is the probability to
find a pair with bare energy spacing W and spatial distance r.

Resonant contribution

For simplicity, let us assume low temperatures, T ≤ ~ω/k. Then n− − n+ ≈ 1 at

E−1 − µ < 0 , E−1 − µ < E2 − 2µ .

It means that one can introduce the variables ∆ = ε1 − ε2 and E−1 = (ε1 + ε2 − W )/2
instead of ε1 and ε2. One can show that P ≈ 1 at

− e
2

κr
−W < E−1 − µ < 0 ,
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and ∫
dE−1 (n− = n+) . . .→

(
W +

e2

κr

)
. . .

One can explain qualitatively this factor as follows from Fig. 10.8. When the center of

E1
-

E1
+

E2 E1
--

κ r
e2

µ

W

Figure 10.8: Energy scheme of absorption by a pair with the length r with allowance of
Coulomb interaction.

gravity (ε1 + ε2)/2 falls into the region of the width ∼ e2/κr below the Fermi level the pair
remains singly ionized and contains only 1 electron.

The full scheme of calculations can be described as follows. We define

σ(ω) =
2
∑

i qi
E2

0

=
1

E2
0

∫
dr

∫
dε2 g(ε2)

∫
ε2

dε1 g(ε1) q(ε1, ε2, r) . (10.19)

For the simplest (Anderson) model

g(ε) = g0Θ(A/2− |ε|).

Another important simplification arises from exponential decay of the overlap integral,
I(r) ∝ exp(−r/a). As a result, the coupling matrix element in the case of resonant
contribution (as well as relaxation time in the case of the relaxational contribution) depend
on r much stronger that other quantities. As a result, one can replace r apart from
exponential functions by a proper characteristic length rc (which is different for the resonant
and the relaxational contributions).

Now we are ready to specify the results for low temperatures.. Substituting expression
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(10.20) for the contribution of a single pair we get (at T = 0)

σ(ω) =
8π2e2g2

0

3~

∫ ∞
rω

(
~ω +

e2

κr

)
r4 I2(r) dr

[(~ω)2 − 4I2(r)]1/2

=
2π2

3
e2g2

0aωr
4
ω

(
~ω +

e2

κrω

)
(10.20)

where
rω = a ln(2I0/~ω) . (10.21)

The case of finite temperatures is more complicated. At the region

~ω � kT � e2/κrω

the width of integration over E−1 remains essentially the same. However the occupation
numbers of the states E±1 become very close, and

(n− − n+) ≈ tanh(~ω/2kT ) .

This estimate is valid within all the region

~ω, kT � e2/κrω .

The case of very large temperatures can be considered in a similar way. At

kT � e2/κrω, ~ω

both states E±1 fall into the layer ≤ kT around the Fermi level, the difference (n− − n+)
being

(n− − n+) ≈ 1

4 cosh2[(E−1 − µ)/2kT ]
.

Thus.

σ(ω) =
2

3
π2e2ag2

0~ω2r4
ω .

Relaxational contribution

Let us start with expression (10.14) which assumes that there are only the pairs with one
electron. Introducing the distribution function F (W, r) of the energy and spatial spacings
(W and r) one obtains

σ(ω) =
e2π

3kT
ω2

∫ ∞
0

r4 dr

∫ ∞
0

F (W, r) dW

cosh2(W/2kT )

τ

1 + ω2τ 2
. (10.22)

We will see later that F (W, r) is a smooth function of r comparing to

τ(W, r) ∝ exp(2r/a) .
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Thus let us define
τ = τ0 exp(2r/a)

where τ0 is a smooth function of W and (in general) r. The properties of the ratio

G =
ωτ

1 + ω2τ 2
=

ωτ0 exp(2r/a)

1 + ω2τ 2
0 exp(4r/a)

depend strongly on the product ωτ0. At

ωτ0 ≥ 1 , r ≥ a

one has

G ≈ 1

ωτ0

exp(−2r/a) .

As a result,

σ(ω) =
e2π

3kT

∫ ∞
0

r4e−2r/a dr

∫ ∞
0

F (W, r) dW

cosh2(W/2kT )

1

τ0(W, r)
. (10.23)

Thus, σ appears ω-independent, the temperature dependence being determined by the
properties of the functions F (W, r) and τ0(W, r). It is important that for the relevant pairs
W ∼ kT , r = rT ∼ (a/2) ln(2I0/kT ).

At
ωτ0 � 1

the ratio G has a sharp maximum at

r = rcω = (a/2) ln(1/ωτ0)

and we can express G as

G ≈ 4a

π
δ(r − rcω) .

In this way we obtain

σ(ω) =
4e2

3kT
ωar4

cω

∫ ∞
0

F (W, rcω) dW

cosh2(W/2kT )
∝ ω . (10.24)

Let us discuss a bit the distribution function F which is just the probability to find a single-
electron pair with the energy distance W , spatial distance r. In the absence of Coulomb
interaction,

F (W, r) =

∫
dε1 dε2 g(ε1)g(ε2) δ

(
W −

√
(ε1 − ε2)2 + 4I2(r)

)
×
{

[f0(E−1 )[1− f0(E+
1 )] + f0(E+

1 )(1− f0(E−1 )]
}
.

Here f0 is the Fermi function. The integration is very simple for the Anderson model
(g = g0 = const). In that case

F (W, r) = g2
0

[W 2 − 4I2(r)]1/2

tanh(W/2kT )
∼ g2

0kT .
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Coulomb interaction changes the situation, and one has to calculate the number of pairs
taking into account electron repulsion at the same center. At low enough at kT � e2/κrcω
that leads to the result similar to the one discussed above,

F (W, r) = g2
0

[W 2 − 4I2(r)]1/2

W

(
W +

e2

κr

)
.

Thus at kT � e2/κrcω the absorption is essentially temperature-independent at ωτ0 � 1.

10.5 Interband light absorption

A typical experimental picture of frequency-dependent light absorption in heavily doped
degenerate GaAs is shown in Fig. 10.9 The main features are:

Figure 10.9: The absorption coefficient as a function of the energy of light quanta at 77 K
in n-GaAs. n · 10−17, cm−3: 1 – 0.02, 2 – 2.2, 3 – 5.3, 4 – 12, 5 – 16.2, 6 – 31.5, 6 – 65.

• rapid decrease of absorption (4 orders of magnitude) inside the forbidden gap (1.51
eV at 77 K).

• Shift towards short waves with increasing concentration (Moss-Burstein shift).
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The last feature is due to Pauli principle which requires that the transitions should take
place only into empty states (above the Fermi level). For indirect transitions the shift
is equal to µ while for direct ones it is µ(1 + me/mh), see Fig. 10.10. This picture is

me
mh

µ

µ

Figure 10.10: Scheme of typical interband absorption processes.

relevant to very low temperatures. At finite temperatures there is an absorption below the
threshold because one can find a hole in the conduction band with the energy µ − ε with
the probability exp(−ε/kT ). Thus,

α ∝ exp[−(µ+ Eg~ω)/kT ] .

Another important source which we are going to discuss are transitions from fluctuation
levels above the top of valence gap, Fig. 10.11 We see that the absorption is proportional to
the probability to find a level with the energy εh = Eg +µ−~ω which decays exponentially
with εh. This probability must be multiplied by the transition probability which is not
exponentially small in many important cases.

Thus, the frequency dependence of absorption in degenerate doped semiconductors
reproduces the DOS profile for minority carriers.

The situation is somewhat different in the case of non-degenerate materials where the
Fermi level is situated deep in the forbidden gap. The situation is realized at high temper-
atures or degrees of compensation, as well as in indirect materials.

Assume that there are impurities of both signs, Nt = ND +NA. The impurity potential
is regarded as Coulombic at short distances r ≤ r0 and screened at large distances. Let
r0 be large enough to consider the potential as classical; we also neglect the correlation in
defect positions. Mathematically, that can be expressed as

~2

mer2
0

,
~2

mhr2
0

� γ , γ =
e2

κr0

(Ntr
3
0)1/2 .
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Eg Eg

Figure 10.11: Scheme of interband transitions in a degenerate semiconductor at T = 0.

One can show that in such a case the DOS tail can be represented as

g(ε) = g(0) exp(−ε2/γ2) .

In such an important case the absorption behavior does not represent the behavior of DOS,
see Fig. 10.12 Suppose we are studying the transition which results in the formation of an

Eg
εh

ωh

εe
A

B

∆

Figure 10.12: Absorption of a quantum of deficit ∆ in a non-degenerate semiconductor.

electron of energy εeand a hole of energy εh,

∆ = εh − εe

(here the energies are calculated from the non-perturbed band edges). We observe that the
electron and hole are spatially separated. Thus the matrix element involves overlap integral
which has almost nothing to do with DOS. What we meet here, is the Franz-Keldysh effect
in a random field.
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To derive the result we use the conventional optimum fluctuation method. Here we
demonstrate a simplified version of the method.

Consider a volume with linear dimension R. Charge fluctuations in the volume create
a uniform electric field E, determined by the condition

eER = ∆ .

The excess number Z of charge defects to create the field E = Ze2/κR2 must be

Z =
EκR2

e
=
κR∆

e2
. (10.25)

The contribution of such a fluctuation to the absorption coefficient is proportional to

1. the probability to find Z excess charges in the given volume,

exp(−Z2/NtR
2)′ ,

2. the probability for an electron to tunnel the distance R to meet the hole,

exp
(
−R
√
m2∆/~

)
(we assume mh � m2).

Substituting Z from Eq. (10.25) we obtain the probability to be proportional to

exp

(
− κ2∆2

e2NtR
− R
√
me∆

~

)
.

Maximizing the exponent, we obtain

R̃ = a

(
∆

E0

)1/2
1

(Nta3)1/2
.

Consequently,

α(∆)

α(0)
= exp

[
−β
(

∆

E0

)1/2
1

(Nta3)1/2

]
where β is the number of the order 1. The derivation is valid at

R̃ ≤ r0 .

In the opposite case, the probability to find the proper fluctuation decreases, and the
optimal cluster has the size r0. In that situation one has to substitute r0 instead of R̃ to
obtain

α(∆)

α(0)
= exp

(
−∆2

γ2

)
.
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Chapter 11

Preliminary Concepts

11.1 Two-Dimensional Electron Gas

An important system where quantum effects were observed is two-dimensional electron gas
(2DEG). There are two basic systems where 2DEG has been studied. One of them is Si
MOSFETs (metal-oxide-semiconductor field-effect transistors). A very good review of such
systems is given in Ref. [7]. A typical device is shown in Fig. 11.1. A (100)Si surface serves

SiO2Metal
p-Si

E

E

E

E

F

F

C

V
eVg

2DEG

-
-

-

-- -
-

Figure 11.1: Band diagram showing conductance band EC , valence band EV and quasi-
Fermi level EF . A 2DEG is formed at the interface between the oxide (SiO2) and p-type
silicon substrate as a consequence of the gate voltage Vg.

as a substrate while SiO2 layer behaves as an insulator. 2DEG is induced electrostatically
by application a positive voltage Vg. The sheet density of 2DEG can be described as

ns =
εox
edox

(Vg − Vt)

where Vt is the threshold voltage for the barrier’s creation
Another important systems with 2DEG involve modulation-doped GaAs-AlGaAs het-

erostructures. The bandgap in AlGaAs is wider than in GaAs. By variation of doping
it is possible to move the Fermi level inside the forbidden gap. When the materials are

239
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put together, a unified level of chemical potential is established, and an inversion layer is
formed at the interface.

+
+
+

2DEG

EV

EV

EC

EF

EF

EC

n-AlGaAs i-GaAs

E
EF

C

EV

Figure 11.2: Band structure of the interface between n-AlGa As and intrinsic GaAs, (a)
before and (b) after the charge transfer.

The 2DEG created by a modulation doping can be squeezed into narrow channels by
selective depletion in spatially separated regions. The simplest lateral confinement tech-
nique is to create split metallic gates in a way shown in Fig. 11.3 A typical nanostructure
is shown in Fig. 11.4.

11.2 Basic Properties of Low-Dimensional Systems

Wave Functions

Let us direct z-axis perpendicular to the plane of 2DEG. The wave function can be decou-
pled as

Ψ(r, z) = χ(z)ψ(r)

where r is the vector in plane of 2DEG. Throughout our considerations we will assume that
all the distances are much larger than interatomic distance and thus we will use the effective
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AlGaAs

GaAs

+

GateGate

--

Channel

Figure 11.3: On the formation of a narrow channel by a split gate.

Figure 11.4: Scanning electron microphotographs of nanostructures in GaAs-AlGaAs het-
erostructures. Taken from M. L. Roukes et al., Phys. Rev. Lett. 59, 3011 (1987).

mass approximation. A good approximation for the confining potential is a triangular one,

U(z) =

{
∞ at z < 0 ;
Fz at z > 0 .

Then one can write the Schrödinger equation for the wave function χ(z) as

∂2χ

∂z2
+

2m

~2
(E − Fz)χ = 0 . (11.1)

Instead z we introduce a dimensionless variable

ζ =

(
z − E

F

)(
2mF

~2

)1/3

.

The quantity

`F =

(
2mF

~2

)−1/3

plays the role of characteristic localization length in z direction. Then Eq. (11.1) acquires
the form

χ′′ − ζχ = 0
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which should be solved with the boundary conditions of finiteness at infinity and zero at
z = 0. Such a solution has the form

χ(ζ) = AAi(ζ) .

Here Ai(ζ) is the Airy function defined as

Ai(ζ) =
1√
π

∫ ∞
0

cos(u3/3 + uζ) du .

For large positive ζ it decays exponentially,

Ai(ζ) ≈ 1

2ζ1/4
e−(2/3)ζ3/2 ,

while for large negative zeta is is oscillatory,

Ai(ζ) ≈ 1

|ζ|1/4
sin

(
2

3
|ζ|3/2 +

π

4

)
.

The energy spectrum E is defined by the roots ζn of the equation

Ai(ζ) = 0 , → En = −E0ζn .

Here

E0 =

(
~2F 2

2m

)1/3

.

We have ζ1 ≈ −2.337 , ζ2 ≈ −4.088. The normalization constants An for each level are
defined as

A−1
n =

∫ ∞
0

dz |χn(z)|2 .

Normalized electron densities An|χn(z)|2 are shown in Fig. 11.5. Each level creates a
subband for the in-plane motion, the energy being

En,k = En + E(k) = En +
~2k2

2m
.

Note that the effective mass m is considerably smaller than the mass of a free electron.

Density of States

The density of states g(ε) is defined as number of states per the energy interval ε, ε + dε.
It is clear that

g(ε) =
∑
α

δ(ε− εα)

where α is the set of quantum numbers characterizing the states. In the present case it
includes the subband quantum number n, spin quantum number σ, valley quantum number
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Figure 11.5: Normalized electron densities An|χn(z/`F )|2 for the first (1) and second (2)

subbands in a triangle potential with the slope F , `F = (~2/2mF )
1/3

.

v (for n-type materials), and in-plane quasimomentum k. If the spectrum is degenerate
with respect to spin and valleys one can define the spin degeneracy νs and valley degeneracy
νv to get

g(ε) =
νsνv
(2π)d

∑
n

∫
ddk δ (ε− En,k) .

Here we calculate the number on states per unit volume, d being the dimension of the
space. For 2D case we obtain easily

g(ε) =
νsνvm

2π~2

∑
n

Θ(ε− En) .

Within a given subband it appears energy-independent. Since there can exist several
subbands in the confining potential (see Fig. 11.6, inset), the total density of states can be
represented as a set of steps, as shown in Fig. 11.6. At low temperature (kT � EF ) all
the states are filled up to the Fermi level. Because of energy-independent density of states
the sheet electron density is linear in the Fermi energy,

ns = N νsνvmEF
2π~2

+ const
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Figure 11.6: Density of states for a quasi-2D system.

while the Fermi momentum in each subband can be determined as

kFn =
1

~
√

2m(EF − En) .

Here N is the number of transverse modes having the edges En below the Fermi energy.
The situation is more complicated if the gas is confined into a narrow channel, say, along
y-axis. In a similar way, the in-plane wave function can be decoupled as a product

ψ(r) = η(y)
1

N
eikxx ,

where N is a proper normalization factor, the energy being

En,s,k = En + Es(kx) = En + Es +
~2k2

x

2m
.

Here Ens ≡ En +Es characterizes the energy level in the potential confined in both (z and
y) directions. For square-box confinement the terms are

Es =
(sπ~)2

2mW 2
,

where W is the channel width, while for the parabolic confinement U(y) = (1/2)mω2
0y

2

(typical for split-gate structures)

Es = (s− 1/2)~ω0 .

It is conventional to introduce partial densities of states for the states with kx > 0 and
kx < 0, g±, respectively. We have,

g+
s (ε) =

νsνv
2π

(
dEs(kx)

dkx

)−1

=
νsνv
√
m

23/2π~
1√

ε− Ens
. (11.2)

The total density of states is

g+(ε) =
νsνv
√
m

23/2π~
∑
ns

Θ(ε− Ens)√
ε− Ens

. (11.3)

The energy dependence of the density of states for the case of parabolic confinement is
shown in Fig. 11.7.
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Figure 11.7: Density of states for a quasi-1D system (solid line) and the number of states
(dashed lines).

Motion in a perpendicular magnetic field

2DEG in a perpendicular magnetic field gives an example of 0-dimensional electronic sys-
tem. Indeed, according to the classical theory the Hamilton’s function of a charged particle
in an external electromagnetic field is

H =
1

2m

(
p− e

c
A
)2

+ eφ ,

where φ is the scalar and A is the vector potential of the field, and p is the generalized
momentum of the particle. According to the rules of quantum mechanics, one should
replace the canonical momentum p by the operator

p→ p̂ = −i~∇

and add also an extra spin term −µH where µ = µB ŝ/s. Here µB = e/2mc is the Bohr
magneton while ŝ is the spin operator. Generally, interaction with periodic potential of the
crystalline lattice leads to renormalization of the spin splitting µB → µ=gfµB where gf is
called the spectroscopic spin splitting factor.

Finally we get,

H =
1

2m

(
p̂− e

c
A
)2

− µH + eφ

=
p2

2m
− e

2mc
(A · p + p ·A) +

e2A2

mc2
− µ

s
ŝ ·H + eφ .
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Since
p̂ ·A−A · p̂ = −i~ divA ,

those operator commute if divA = 0. It holds in a uniform field with

A =
1

2
H× r .

The wave function in a magnetic field is not uniquely defined: it is defined only within the
gauge transform

A→ A +∇f , φ→ φ− 1

c

∂f

∂t
,

where f is an arbitrary function of coordinates and time. Under such a transform only the
phase of wave function is changed by the quantity ef/~c that does not affect the observable
quantities.

In classical mechanics, the generalized momentum of the particle is related to its velocity
by the Hamilton equations,

mv = p− eA/c .
According to the quantum mechanics we arrive at a similar expression. However different
components of velocity do not commute, the commutation rules being

{v̂x, v̂y} = i(e~/m2c)Hz ,

{v̂y, v̂z} = i(e~/m2c)Hx ,

{v̂z, v̂x} = i(e~/m2c)Hy .

That means that the particle cannot simultaneously have definite velocities in all three
directions.

Let us determine the energy levels in a 3-dimensional system embedded into a uniform
magnetic film with a vector potential

Ax = −Hy , Ay = Az = 0 .

The Hamiltonian then becomes

H =
1

2m

(
p̂x +

eHy

c

)2

+
p̂2
y

2m
+

p̂2
z

2m
− µ

s
ŝzH .

First, the operator ŝz commutes with the Hamiltonian. Thus z-component of spin is
conserved and can be replaced by its eigenvalue σ. Thus one can analyze the Schrödinger
equation for an ordinary coordinate function,

1

2m

[(
p̂x +

eH

c
y

)2

+ p̂2
y + p̂2

z

]
ψ − µ

s
σHψ = Eψ .

It is naturally to search for solution in the form

ψ = ei(pxx+pzz)/~φ(y) .
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The eigenvalues px and pz take all values from −∞ to ∞. Since Az = 0 we get

pz = mvz .

Thus the motion along magnetic field in 3D system is not quantized. For a motion in the
xy-plane we have the following Schrödinger equation,

φ′′ +
2m

~2

[(
E +

µσ

s
H − p2

z

2m

)
− 1

2
mω2

c (y − y0)2

]
φ = 0 . (11.4)

Here
y0 = −cpx/eH = −a2

Hkx , aH = (c~/eH)1/2 , ωc = |e|H/mc . (11.5)

Since this equation is the same as the Schrödinger equation for a harmonic oscillator, we
obtain

E = (n+ 1/2)~ωc − (µσ/s)H + p2
z/2m, n = 0, 1, . . . (11.6)

The first term gives discrete levels which corresponds to the finite motion in the xy-plane,
they are called Landau levels. For an electron, µ/s = −|e|~/mc, and the energy spectrum
reads as

E =

(
n+

1

2
+ σ

)
~ωc +

p2
z

2m
. (11.7)

The eigenfunctions φn(y) are

φn(y) =
1

π1/4a
1/2
H

√
2nn!

exp

[
−(y − y0)2

2a2
H

]
Hn

[
y − y0

aH

]
. (11.8)

Here Hn is the Hermite polynomial.
In classical mechanics the motion in a magnetic field in xy-plane takes place in a circle

about a fixed center. Here the conserved quantity y0 corresponds to y coordinate of the
center of the circle. It is easy to see that the combination

x0 = cpy/eH + x

is also conserved, it commutes with the Hamiltonian. The quantity x0 corresponds to a clas-
sical x coordinate of the circle center. However, the operators ŷ0 and x̂0 do not commute.
That means that the coordinates x0 and y0 cannot take definite values simultaneously. 1

One can ask: why the coordinates x and y are not equivalent? The reason is that
the wave functions (11.8) correspond to the energy independent of ky. Consequently, any
function of the type ∑

kx

C(kx)ψN,kx,kz

1 In a classical mechanics, the radius of the circle is rc = cmvt/eH = vt/ωc. Here vt is the tangential
component of the velocity. Thus we have,

y = y0 + rc(vx/vt) , x = x0 − rc(vy/vt) .
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corresponds to the same energy and one can chose convenient linear combinations to get
correct asymptotic behavior.

To calculate the density of states in a magnetic field first we should count the number
of the values ky corresponding to the energy εα (the so-called degeneracy factor). As usual,
we apply cyclic boundary conditions along y and z -axes and get

kx =
2π

Lx
ny, kz =

2π

Lz
nz.

At the same time, we assume that the solution exists only in the region

0 < y0 < Ly.

So, the degeneracy factor is

Lx
2π
|kx|max =

Lx
2πa2

H

ymax
0 =

LyLx
2πa2

H

. (11.9)

This is very important relation which shows that one can imagine Landau states as cells
with the area a2

H . We will come back to this property later.
Now it is easy to calculate number of states in a 3D system treating the kz variable as

for the usual 1D motion

2|kz|Lz
2π

=
2
√

2mLz
2π~

√
ε− ~ωc(N + 1/2)

for each state with a given N . Finally, the total number of states per volume for a given
spin is

Zs(ε) =
∑
N

ZsN(ε) =
2
√

2m

(2π)2~a2
H

∑
N

√
ε− ~ωc(N + 1/2)

where one has to sum over all the values of N with non-negative ε−~ωc(N+1/2). The total
number of sates is Z(ε) = 2Zs(ε). To get DOS one should to differentiate this equation
with respect to ε. The result is

gs(ε) =
dZ(ε)

dε
=

√
2m

(2π)2~a2
H

∑
N

Θ[ε− ~ωc(N + 1/2)]√
ε− ~ωc(N + 1/2)

.

Here

Θ(x) =


1 for x > 0 ;
1/2 for x = 0 ;
0 for x < 0

is the Heaviside step function. To take the spin into account one should add the spin
splitting ±µBgfH to the energy levels. If we ignore the spin splitting we can assume
spin degeneracy and multiply all the formulas by the factor 2. We take it into account
automatically using g(ε) = 2gs(ε).
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Figure 11.8: Landau levels as functions of pz (left panel) and of H (right panel). The Fermi
level is assumed to be fixed by external conditions.

The behavior of the density of states could be interpreted qualitatively in the following
way. The Landau levels as functions of magnetic field for a given value of pz are shown in
Fig. 11.8. As a function of magnetic field, they form the so-called Landau fan. The Fermi
level is also shown. At low magnetic fields its dependence on magnetic field is very weak.
We see that if magnetic field is small many levels are filled. Let us start with some value
of magnetic field and follow the upper filled level N . As the field increases, the slopes of
the “fan” also increase and at a given threshold value HN for which

εN(HN) = εF .

As the field increases the electrons are transferred from the N -th Landau level to the other
ones. Then, for the field HN−1 determined from the equation εN−1(HN−1) = εF the (N−1)
becomes empty. We get

HN ≈
mccεF
e~

1

N
, so ∆

(
1

H

)
≈ e~
mccεF

.

Here mc is the so-called cyclotron effective mass which in the case of isotropic spectrum is
the same as the density-of-states effective mass. We observe that DOS in a given magnetic
field oscillated with the increase in energy just similar to the case of quasi 1D systems.
Here Landau sub-bands play the same role as the modes of transverse quantization for
quantum channels.

For a 2DEG the motion along z-direction is quantized, and instead of eipzz/~ we have
χs(z). The means that for each subband of spatial quantization we have a sharp Landau
level, the density of states (per area) being

g(ε) =
νveH

4π2~2c

∑
n,s,σ

δ(ε− En,s,σ) .

Thus the density of states has sharp maxima at the energy levels that is a feature of
so-called 0-dimensional system. In real samples the peaks are smeared by disorder.
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11.3 Degenerate and non-degenerate electron gas

At equilibrium the states are filled according to the Fermi function

f0(ε) =
1

exp[(ε− µ)/kT ] + 1
,

where µ is the chemical potential while k is the Boltzmann constant. The chemical potential
is determined by the normalization to the total number of electrons as

n =

∫ ∞
0

g(ε) f0(ε) dε

where n is the electron density. At zero temperature the chemical potential is called the
Fermi energy, εF . The graph of the Fermi function and its energy derivative is given in
Fig. 11.9
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Figure 11.9: The Fermi distribution (solid line) and its energy derivative multiplied by kT
(dashed line) for ζ/kT = 10.

Since at T = 0
f0(ε) ≈ Θ(ε− ζ) ,

the Fermi energy is given by the equation

n =

∫ εF

0

g(ε) dε . (11.10)

The limiting case T = 0 is actually means the the inequality kT � εF is met. In the
opposite limiting case, kT � εF , we get

f0(ε) ≈ e(ζ−ε)/kT , n = eζ/kT
∫ ∞

0

g(ε) e−ε/kT dε .
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Thus,

f0(ε) = A(T ) e−ε/kT ,
1

A(T )
=

1

n

∫ ∞
0

g(ε) e−ε/kT dε . (11.11)

This distribution is called the Boltzmann one.

11.4 Relevant length scales

One can discriminate between several important length scales in low-dimensional systems.
They are shown in the Table 11.1.

1 mm
Mean free path in the quantum Hall regime

100 µm
Mean free path/Phase relaxation length
in high-mobility semiconductor at T < 4 K

10 µm
1 µm

Commercial semiconductor devices (1990)
100 nm

de Broglie wave length in semiconductors.
Mean free path in polycrystalline metallic films

10 nm
1 nm

de Broglie wave length in metals
Distance between atoms

1 Å

Table 11.1: A few relevant length scales. Note that 1 µm = 10−6 m = 10−4 cm; 1 nm =
10−9 m = 10 Å.

The above mentioned scales have the following physical meaning:

De Broglie wave length, λ. This length is defined as

λ =
2π~
p

=
2π

k

where p (k) is the typical electron momentum (wave vector). For Fermi gas the
characteristic momentum is just the Fermi momentum. For the case of a single filled
band in 2DEG,

λ = 2π/kF =
√

2π/ns

where ns is the sheet density. For the Boltzmann gas, p ≈
√

2mkT , and

λ =
2π~√
2mkT

.
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Mean free path, `. This is a characteristic length between the collisions with impurities
or phonons. It is defined as

` = vτtr

where v is the typical velocity while τtr is the so-called transport relaxation time. It
is defined as

1

τtr
∝
∫
dθ sin θW (θ) (1− cos θ)

where θ is the scattering angle while W (θ) is he scattering probability. Usually the
transport is characterized by the mobility

u =
eτtr
m

.

The physical meaning of mobility is that a typical electron drift velocity acquired in
an external electric field E is given by the relation

vd = uE .

Phase-relaxation length, Lϕ. This is a specially quantum mechanical relaxation length
which has no analogs in classical physics. Namely, classical motion can be described
as evolution of the probability to find a particle at a given point at a given time.
However, in quantum mechanics the state is characterized by the wave function which
has a phase. The phase is important in the so-called interference phenomena, where
the electron wave functions having different pre-history are collected at the same
point. If the phases of the waves are not destroyed, a specific quantum interference
phenomena can be observed and important. The phase-relaxation time, τϕ, describes
relaxation of the phase memory.

It is clear that scattering against any static spin-independent potential cannot lead
to the phase relaxation. Indeed, in any stationary potential the equations of motion
are time-reversible. The only processes which can be responsible for phase relaxation
are the ones which broke the symmetry with respect to time-reversal. Among them
are inelastic scattering by phonons, electron-electron collisions, spin-flip processes,
etc. An important feature of such processes is that an electron suffers many elastic
collisions during a typical time τϕ. Since it moves diffusively a proper way to estimate
the relevant length Lϕ is as follows:

Lϕ =
√
Dτϕ ,

where D = (1/d)v` is the diffusion constant (d is the dimensionality of the electron
gas).

Thermal dephasing length, LT . The above mentioned relaxation process is relevant to
the interference of the wave functions belonging to a single-electron state. However,
interference can be also important for the interaction of two electrons having close
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energies. Indeed, if the energy difference between the electrons is ≈ kT they travel
almost coherently during the time ~/kT . Thus the characteristic length of coherent
propagation is estimated as

LT =
√
~D/kT .

Comparing mean free path ` with characteristic dimensions of the system, L, one can
discriminate between diffusive, `� L and ballistic, ` ≥ L, transport. Such a classification
appears incomplete in the situation where different dimensions of the sample are substan-
tially different. The situation is illustrated in Fig. 11.10 for the case where the length L of
the sample is much larger than its width, W . If phase coherence is taken into account, the

Figure 11.10: Electron trajectories for the diffusive (` < W,L), quasi-ballistic (W < ` < L)
and ballistic (` > W,L) transport regimes. From [11].

scales Lϕ and LT become important, and the situation appears more rich and interesting.
Mesoscopic conductors are usually fabricated by patterning a planar conductor that has one
very small dimension to start with. Although some of the pioneering experiments in this
field were performed using metallic conductors, most of the recent work has been based on
the gallium arsenide (GaAs)–aluminum gallium arsenide (AlGaAs) material system. Some
important parameters for such systems are shown in Fig. 11.11.



254 CHAPTER 11. PRELIMINARY CONCEPTS

Figure 11.11: Electronic properties of the 2DEG in GaAs-AlGaAs and Si inversion layers.
From [10].



Chapter 12

Ballistic transport

12.1 Landauer formula

We start this chapter by a description of a very powerful method in physics of small systems
- so-called Landauer approach.

The main principle of this approach is the assumption that the system in question is
coupled to large reservoirs where all inelastic processes take place. Consequently, the trans-
port through the systems can be formulated as a quantum mechanical scattering problem.
Thus one can reduce the non-equilibrium transport problem to a quantum mechanical one.

Another important assumption is that the system is connected to reservoirs by ideal
quantum wires which behave as waveguides for the electron waves. We start our analysis
from the discussion of the properties of an ideal quantum wire.

Ideal quantum wire

Consider 2 large reservoirs of electron gas reservoirs having the difference δn in the electron
density and separated by a pure narrow channel. For small δn one can assume that there
is a difference in a chemical potential, δµ = δn/g(εF ). In the following we shall use the
Fermi level of non-biased system as the origin for the chemical potentials. So the difference
between the chemical potential in α-th reservoir will be denoted as µα.

If the channel is long and uniform, then the total current carried by the state char-
acterized by a transverse mode n and a given direction of spin which propagates without
scattering is

Jn = e

∫
dkz
2π~

∂εn(kz)

∂kz
=

2

2π~

∫ εF+µβ

εF+µα

dε
∂εn(kz)/∂kz
|∂εn(kz)/∂kz|

=
2

h
δµ .

If we take into account electron spin and N transverse modes are open, then the conduc-
tance is given by the expression G = 2e2

h
N .

We come to a very important conclusion: an ideal quantum wire has finite resistance
h/2e2N which is independent of the length of the wire.

255
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As we have seen, even an ideal quantum wire has a finite resistance. That means a
finite heat generation even in the absence of any inelastic processes inside the wire. Below
we will discuss the physical picture of heat release by a current-carrying nanostructure
(here we follow the considerations of Ref. [23]).

First of all let us specify what heat release is. It will be convenient to consider an
isolated system. Therefore we will have in mind the following physical situation. There is
a capacitor which is discharged through the conductor of interest. The product RC of the
whole system, R and C being the resistance and capacitance respectively, is much bigger
than any relaxation time characterizing the electron or phonon system of the conductor.
This means that for all the practical purposes the conduction process can be looked upon
as a stationary one. The total energy of the system, U , is conserved, while its total entropy,
Ŝ, is growing. The rate of heat generation is expressed through T∂Ŝ/∂t, where T is the
temperature, i.e. through the applied voltage and characteristics of the nanostructure itself.
This means that the result is independent of the assumption that the considered system
is isolated, which is made only for the sake of derivation. This thermodynamically defined
heat is generated in the classical reservoirs over the length having a physical meaning of
the electron mean free path. That is the same mean free path that enters the Drude
formula, which determines the conductivity of the reservoirs themselves, the amount of
heat generated per second in both reservoirs being the same.

It is interesting to indicate that even purely elastic collisions can result in a heat gen-
eration although they of course cannot establish full equilibrium. This has a clear physical
meaning. The amount of order in the electron distribution resulting in electric current can
bring about mechanical work. For instance, one can let the current flow through a coil,
and a magnetic rod can be drawn into the coil. In such a way the electrons transferring
the current can execute a work on the rod. As a result of scattering, the amount of order
in the electrons’ distribution diminishes, and this means dissipation of mechanical energy
into the heat. It has been shown that the heat release is symmetric in both reservoirs even
if the scatterers in the system are asymmetric.

All the above considerations do not mean that the collisions that give the main con-
tribution to the heat release, also establish full equilibrium. What equilibrium needs is
inelastic collisions which transfer the energy of electrons taking part in charge transfer to
other degrees of freedom, such as to other electrons and phonons. In particular, a local
equilibrium electron distribution is established over the length scale determined by electron-
electron interaction. Such a distribution can be characterized by a local electro-chemical
potential and sometimes an electron temperature. The latter can in principle be mea-
sured by optical methods. On the other hand, the equilibrium with respect to the lattice
is established at the scales of electron-phonon and phonon-phonon mean free paths. Only
over those distances from the channel one can treat the results in terms of the true local
temperature.
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Resistance of a quantum resistor

Consider a system shown in Fig. 12.1 consisting of a barrier connected to reservoirs by
ideal quantum wires. If there is some reflection only a part of the current is transmitted.

Figure 12.1: On the resistance of a quantum resistor.

In this case one can introduce the transmission probability of the mode n, Tn, to obtain
(including spin degeneracy)

J =
2

h
δµ

N∑
n=1

Tn .

As a result,

G =
2e2

h

N∑
n=1

Tn =
2e2

h
Tr tt† . (12.1)

Here t is the matrix of scattering amplitudes while the expression is called two-terminal
Landauer formula.

This very important and looking simple formula was confusing during a long period.
Indeed, this is the conductance which is measured between two reservoirs. Having in mind
that the resistance of the connecting ideal wires (per one conducting mode) is h/2e2 we
can ascribe to the scattering region the resistance

h

2e2

[
1

T
− 1

]
=

h

2e2

R

T
,

where R is the reflection coefficient. Consequently, in the original formulation the quantum
resistance was described as

G =
2e2

h

N∑
n=1

Tn
1− Tn

. (12.2)

However, the quantity which is usually measured is given by Eq. (12.1).
Now we derive the Landauer formula for finite-temperature and so-called multichannel

case when the leads have several transverse modes. Consider ideal wires which lead to
a general elastic scattering system. Let each lead has the cross section A and have N⊥
transverse channels characterized by wave vectors ki so that,

Ei +
~2k2

i

2m
= EF .
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The incoming channels are fed from the electron baths with the same temperature and
chemical potentials µ1, µ2, . . .. The outgoing channels are fed up to thermal equilibrium
population. We shall assume that the particles are absorbed in the outgoing baths. The
sources are assumed to be incoherent, the differences µ1−µ2 are also assume small to yield
linear transport. We introduce the scattering amplitudes tij for the transmission from jth
incoming to ith outgoing channel. Reflection amplitudes rij are introduces in a similar
way for reflection into the ith incoming channel. If we replace the incoming and outgoing
channels, we denote the proper amplitudes by primes. In this way it is convenient to
introduce 2N⊥ × 2N⊥ scattering matrix as

S =

(
r t′

t r′

)
.

From the current conservation we must require unitarity while from time reversal symmetry
S = S̃. Thus we have also SS? = I where star stays for complex conjugation while tilde
for transposition. In a magnetic field the Onsager relation requires S(H) = S̃(−H).

It one defines the total transmission and reflection into ith channel as

Ti =
∑
j

|tij|2 , Ri =
∑
j

|rij|2 .

then from unitarity condition we get∑
i

Ti =
∑
i

(1−Ri) .

Since the densities of states in each channel are 1D like, gi(E) = (π~vi)−1 we write the
current through outgoing channels as

I =
e

π~
∑
i

∫
dE [f1(E)Ti(E) + f2(E)R′(E)− f2(E)]

=
(µ1 − µ2)e

π~

∫
dE

(
− ∂f
∂E

)∑
i

Ti(E) .

Thus the conductance becomes

G =
2e2

h

∫
dE

(
− ∂f
∂E

)
Tr tt† .

This is the two-terminal conductance measured between the outside reservoirs which in-
cludes contact resistances.

Multiterminal resistance

For simplicity we shall discuss the case of zero temperature. Let us introduce the total
transmission probability from the bath α to the bath β,

Tα→β =
Nα∑
n=1

Nβ∑
m=1

|tβα,mn|2 .
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Here Ni is the number of propagating modes in each lead connected to ith reservoir.
Counting all the chemical potentials from the Fermi level, we see that the reservoir α
injects the current (2e/h)Nαµα into the lead α. The fraction Tα→β/Nα is transmitted to
the reservoir β while the fraction Tα→α/Nα = Rα/Nα is reflected back into reservoir α.
The the net current Iα is given by the following set of equation,

h

2e
Iα + (Nα −Rα)µα −

∑
β 6=α

Tβ→αµβ . (12.3)

Introducing vectors ~I and ~µ with components Iα and µα, respectively, we can write

~I = Ĝ~µ , (12.4)

where the conductance matrix Ĝ is defined as

Gαβ =
2e2

h
[(Nα −Rα) δαβ − Tβ→α (1− δαβ)]

=
2e2

h
[Nα δαβ − Tβ→α] . (12.5)

Here we use the relation Tα→α = Rα. The sum of rows of this matrix is zero because
of current conservation, the sum of the elements of each row also vanishes because if one
changes all the chemical potentials by the same amount no current will be induced. Thus

Nα −Rα =
∑
β 6=α

Tβ→α =
∑
β 6=α

Tα→β .

The equations (12.4) and (12.5) are called often the Landauer-Büttiker formalism. They

4
V

I I

1 2

3

Figure 12.2: On the resistance of 4-terminal device.

allow find, e. g. 4-terminal resistance. Indeed, we can put I1 = −I2 = I, I3 = I4 = 0.
Then ~I = I~j where

~j = I


1
−1
0
0

 .

Thus

R34 =
µ4 − µ3

I
=
(
Ĝ−1~j

)
4
−
(
Ĝ−1~j

)
3
.
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Having in mind the properties of the scattering amplitudes we have,

Tα→β(H) = Tβ→a(−H)

that results in the reciprocity relation

Rαβ,γδ(H) = Rγδ,αβ(−H) .

Here Rαβ,γδ stands for the resistance measured for voltage contacts γ, δ while the current
passes through the contacts α, β. Note that this relation works even in the case when the
concept of local conductivity is not applicable. What we only need is linear response and
absence of inelastic scattering inside the device under consideration.

One can easily generalize the above expressions for the case of finite temperatures by
replacement of the element of Ĝ-matrix by their thermal averages,

〈A〉T =

∫∞
0
dE g(E) (∂f0/∂E)A(E)∫∞
0
dE g(E) (∂f0/∂E)

.

12.2 Application of Landauer formula

Point ballistic contact

The most clean system is the so-called quantum point contact (QPC) - short and narrow
constrictions in 2d electron gas. A sketch of QPC is shown in Fig. 12.3 The conductance of

Figure 12.3: A sketch of QPC formed by splitted gates.

QPC is quantized in the units of 2e2/h. The quantization is not that accurate as in quantum
Hall effect (about 1%) because of non-unit transparencies Tn and finite temperature. It is
interesting to compare quantum and classical behavior of QPC. In a classical picture one
can write

J = W (δn)vF

∫ π/2

−π/2

dα

2π
cosα =

1

π
WvF (δn) .

Thus the “diffusion constant” is

Deff =
J

δn
=

1

π
WvF → G = e2g(εF )Deff =

2e2

h

kFW

π
.
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Figure 12.4: Quantization of conductance of a point contact: Schematic picture (left) and
experimental result (right).
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Figure 12.5: On the classical conductance of a point contact.

Note that the integer part of the quantity kFW/π is just the number of occupied modes
according to quantum mechanics.

Series addition of quantum resistors

Assume that we have two obstacles in series. Let the wave with unit amplitude is incident
to the region, the amplitude of the reflected wave is A while D is the amplitude the
wave transmitted through device. The obstacles are connected by an ideal conductor, the
phase shift of the wave along which being φ. Let the wave emerging from the obstacle

φ−eC

iφ
eB

i

D
1

A

B

C

Figure 12.6: On series of quantum resistors.

1 is B exp(kx − ωt). It reaches the obstacle 2 gaining the phase φ, having the complex
amplitude B exp(iφ). The reverse wave C gains the phase −φ. In this way we get the
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following set of equations,

A = r1 + t1C , B = t1 + r′1C

Ce−iφ = r2Be
iφ , D = t2Be

iφ

Solving this equation we obtain,

D =
eiφt1t2

1− e2iφr2r′1
,

that yields for the total transmittance:

T = |D|2 =
T1T2

1 +R1R2 − 2
√
R1R2 cos θ

(12.6)

where θ = 2φ+ arg(r2r
′
1). The ratio between reflection and transmission which should be

understood as a reduced resistance (in units h/2e2) of the system excluding wires is

G−1 ≡ R

T
=

∣∣∣∣AD
∣∣∣∣2 =

R1 +R2 − 2
√
R1R2 cos θ

T1T2

, G ≡ hG

2e2
. (12.7)

This is a very strange formula. Assume that we made an ensemble of the systems which
differ only by the distance between the obstacles, i. e. by the phase φ. Let the distribution
of φ will be constant in the interval (0, 2π). The averaging over φ we get

〈G−1〉 =
R1 +R2

(1−R1)(1−R2)
,

while the Ohm’s law will provide

G−1 =
R1

1−R1

+
R2

1−R2

.

As a result the Ohm’s law survives only at small reflections.
Let us construct a chain of n resistors with very small reflections. Then the total

reflection first increases linearly in n. Finally the total transmission becomes substantially
less than 1. Now let us add a very good conductor to this chain. We get

〈G−1〉n+1 =
Rn +R

Tn
= 〈G−1〉n +

R

Tn
.

Thus an addition a good conductor increases the resistance by R/Tn > R. Such a behavior
can be formulated as a “renormalization group”

1

R

d

dn
〈G−1〉n = 〈G−1〉n + 1 .

Thus the average resistance grows exponentially with the length which has something to
do with 1D localization. This considerations are not fully satisfactory because resistance
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is not the proper quantity to be averaged. Following Anderson, the proper quantity to be
averaged is ln(1 + G−1). Indeed,

1 + G−1 = 1 +R/T = 1/T → ln(1 + G−1) = − lnT .

The quantity − lnT plays the role of extinction exponent and it should be additive to
successive scatterers is the relative phases are averaged out. We get this relation using∫ 2π

0

dθ ln(a+ b cos θ) = π ln
1

2

[
a+
√
a2 − b2

]
.

So the exact scaling is given by the relation

〈ln
(
1 + G−1

n

)
〉 = n(Rh/2e2) .

Parallel addition of quantum resistors.

Let us now discuss the parallel addition of two single-channeled quantum resistors. The
geometry of the problem is shown in Fig. 12.7. All the phases and scattering effects along

1

t1 t1’

r1’

r2

t2
r2’

t2
’

x

r

1
Φ

x 2
y2

u 1

u 2

v1

v2

y1 FI

Figure 12.7: On the parallel addition of quantum resistances.

the branches are absorbed by the scattering parameters. Time-reversal symmetry requires
ti = t′i while the current conservation requires

−ti/t′?i = ri/r
′?
i .

In the presence of Aharonov-Bohm flux Φ through the loop, following from the gauge
invariance the scattering amplitudes are renormalized as

t1 → t1e
−iθ, t′1 → t1e

+iθ, t2 → t2e
+iθ, t′2 → t2e

−iθ, ri → ri, r
′
i → r′i .

Here θ = πΦ/Φ0.
This point needs some more explanation. An Aharonov-Bohm flux Φ through the

opening can be represented as
∮

A · dl along the path circulating the opening. Here A is
the vector potential. One can eliminate this flux by a gauge transform

ψ′ = ψ exp

[
ie

~c
∑
j

χj(rj)

]
,
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where χ is defines as Al = ∇χ. The transformed Schrödinger equation has Al = 0.
However, the price for this is that the transformed wave function, ψ′, does not satisfy
periodic boundary conditions. When the electron coordinate is rotated once around the
ring the phase of χ′ is changed by δχ = 2πΦ/Φ0. In our calculation this phase shift is
absorbed into the expressions for the transition amplitudes.

To find the transmitted wave one has to determine 10 unknown amplitudes, x1, x2, y1, y2, u1, u2, v1, v2, F, R.
It can be done solving the set of matching equations at the scatterers and the triple con-
nections. It is assumed that the connections do not introduce additional scattering and
can be described by the unitary scattering matrix

S =

 0 −1/
√

2 −1/
√

2

−1/
√

2 1/2 −1/2

−1/
√

2 −1/2 1/2

 .

Here Sii denote the reflection amplitude of the ith channel while off-diagonal elements Sij
are the transition amplitudes from the channel i to j. The subscript 1 is used for left
incoming channel and right outgoing channel. After rather long algebra made originally in
Ref. [24] we arrive at the solution,

T ≡ |F |2 = 4
α + β cos 2θ

γ + δ cos 2θ + ε cos 4θ
, (12.8)

where α, β, γ, δ, ε are rather complicated functions of the scattering amplitudes,

α = |A|2 + |B|2 , β = 2 Re (AB?) , γ = |D|2 + |E|2 ,
δ = 2 Re (DC? + EC?) , ε = 2 Re (DE?) ,

A = t21t2 + t2(r1 − 1)(1− r′1) , B = t22t1 + t1(r2 − 1)(1− r′2) ,

D = E = t1t2 C = t21 + t22 − (2− r1 − r2)(2− r′1 − r′2) .

This expression describes a rich physical picture. Even in the absence of magnetic field,
θ = 0 the transmittance can be strongly dependent on the phases of the complex scattering
amplitude. If we make one branch fully non-conducting, t1 = 0, still the appropriate choice
of phases of the reflection amplitudes r1 and r′1 can result either in T = 0 or T = 1. Indeed,
in this case,

A = t2(r1 − 1)(1− r′1) , B = D = E = 0 , C = t22 − (2− r1 − r2)(2− r′1 − r′2) ,

α = |t2|2|(r1 − 1)(1− r′1)|2 , β = 0 , γ = |t22 − (2− r1 − r2)(2− r′1 − r′2)|2 ,
δ = ε = 0 .

As a result we get

T =
|t2|2|(r1 − 1)(1− r′1)|2

|t22 − (2− r1 − r2)(2− r′1 − r′2)|2
.

Putting r1 = 1 we obtain T = 0. Thus we observe that non-conducting branch can influence
the total conductance strongly.

Of course, all the discussed effects are due to interference. If the size of the system
exceeds Lϕ we come back to classical laws.
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12.3 Additional aspects of ballistic transport

Adiabatic point contacts

The results of first observations of conductance quantization were surprising. Indeed, from
quantum mechanics it is well know that any sharp potential barrier produces oscillations
in the transmission coefficient as a function of the energy. However, the experimental steps
were more or less rectangular. An explanation of such a behavior was given in Ref. [25].
The authors showed that if the point contact has a smooth profile, i. e. if its width d
depends on the longitudinal coordinate x in a smooth way, then the T (E) dependence is
very close to a perfect step. To make the results simple, let us consider a channel with
rectangular confinement. Let us assume that we can separate the variables in an adiabatic
way, Ψn(x, y) = ψn(x)ϕn,x(y), and first solve the Schrödinger equation for a given width
d. In this way we get the transverse wave functions

ϕn,x(y) =

√
2

d(x)
sin

[
πn

2y + d(x)

d(x)

]
.

The Schrödinger equation for the longitudinal motion has the form

− ~2

2m

d2ψ

dx2
+ εn(x)ψ = Eψ , εn(x) =

π2n2~2

2m[d(x)]2
.

If the variation d(x) is smooth at the scale of de Broglie wave length, k−1
F , the potential

εn(x) is semiclassical. Then one can use the semiclassical scheme for scattering problem
and choose

ψn(x) =

√
pn(∞)

pn(x)
exp

[
i

~

∫ x

0

pn(x′) dx′
]
, pn(x) =

√
2m[E − εn(x)] .

The transmittance step depends occurs when the Fermi energy crosses the maximum of

d

ρ

ο

Energy

x

E

Figure 12.8: On the adiabatic quantum point contact.
.

the potential εn(x) for the upper transverse mode, see Fig. 12.8. Expanding the potential
near its maximum we get

εn(x) = εn(0)

[
1−

(
∂2d(x)

∂x2

)
x=0

x2

d

]
.
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Since ∂2d/∂x2 = 2/ρ where ρ is the curvature radius of the center of constriction, we get
the barrier as

U(x) = εn(0)

[
1− 2x2

dρ

]
.

The transmission through a parabolic barrier is known,

T (E) =
1

1 + exp[−π2(kd0/π − n0)
√

2ρ/d0]
. (12.9)

Here d0 is the minimal width of the constriction, n0 is the number of upper level, while
k = ~−1

√
2mE. We observe that the shape of the step is almost n independent, the

transition being sharp at ρ ≥ d0. It is important that the numerical factor π2
√

2 makes
the transitions sharp even at R ∼ d0. The same numerical factor helps for the semiclassical
condition to be valid. This criterion reads π2

√
2ρ/d0 � 1. To make the motion through

the contact ballistic the elastic mean free path should exceed
√
ρd0.

12.4 Electron-electron interaction in ballistic systems

The case of pure 3D metal. Concept of Fermi liquid

Let us begin with the estimate of the electron-electron scattering in a Fermi gas. Suppose
that we have a particle 1 outside the Fermi sea, see Fig. 12.9. If this particle interacts

Figure 12.9: Scattering processes for electron-electron interaction.

with another one, 2, inside the Fermi sea both final states should be outside the Fermi sea
(Pauli principle!). According to the momentum conservation law,

p1 + p2 = p′1 + p′2,

and, as we have seen,

p1, p
′
1, p

′
2 > pF ; p2 < pF.

The momentum conservation law is shown graphically in the right panel of Fig. 12.9.
One should keep in mind that the planes (p1,p2) and (p′1,p

′
2) are not the same, they are
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shown together for convenience. To get the escape probability for the particle 1 one should
integrate over the intermediate momenta

W ∝
∫
δ(ε1 + ε2 − ε′1 − ε′2) (dp2) (dp′1)

(p′2 is fixed by the momentum conservation). The energy conservation law actually deter-
mines the angle between p′1 and p′2 for given absolute values of these vectors. Consequently,
the rest is to integrate over p2 = |p2| and p′1 = |p1|.

Let p1 be close to pF . It means that all the momenta are close to pF and the angles
with the vector p1 + p2 are almost the same. So let us assume cosines to be the same and
from the relation between the projections write down

p′1 ≈ p1 + p2 − p′2.

Now let us recall that p′2 > pF . Consequently, p′1 < p1 + p2 − pF . But at the same time,
p′1 > pF . Thus

p1 + p2 − pF > pF , or p2 > 2pF − p1.

But from the Pauli principle, the upper limit for p2 is pF . As a result, we come to the
following chain of inequalities

0 > p2 − pF > pF − p1, 0 < p′1 − pF < (p1 − pF ) + (p2 − pF ).

Finally, ∫
dp2 dp

′
1 =

∫ 0

−α1

dα2

∫ α1+α2

0

dα′1 =
α2

1

2

where we have introduced αi = pi−pF . Now we should remember that ε−εF = vF (p−pF ).
SoW ∝ (ε−εF )2. The simplest way to estimate τ is to use dimensionality approach. Indeed,
the average potential and kinetic energies are of the order of εF . Consequently, the only
quantity which is proportional to (ε− εF )2 and has the time dimensionality is

τ ∼ ~εF
(ε− εF )2

.

We came to important conclusion: if one is interested in quasiparticles near the Fermi
level, |ε− εF | � εF , he can treat them as to near classical ones provided

~
(ε− εF )τ

≈ ε− εF
εF

� 1.

The typical value for the quasiparticle energy is kBT.This is why the electron-electron
interaction can be treated in the leading approximation in a self-consistent approximation.
The estimates above based on the conservation laws provide background of the theory
of Fermi liquid. The essence of this concept is that the excitations in the vicinity of
the the Fermi surface can be treated as quasiparticles which behave as particles with
renormalized velocity. Consequently, the effects of electron-electron interaction are not
crucially important in pure 3D systems.
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One-dimensional systems. Tomonaga-Luttinger liquid

For 1D interacting systems the above considerations are not valid because for a single
branch linear dispersion near the Fermi points the energy spectrum is close to linear,
E − EF ≈ v(p − pF ). That means that the energy and momentum conservation laws
are actually the same, and this is why they are not restrictive as in a 3D case. For this
reason, the perturbative corrections describing even weak electron-electron interaction are
divergent. A proper model for interactive 1D electrons is the so-called Tomonaga-Luttinger
model. According to this model, collective electron modes (plasmons) with linear spectra
are described by new, boson modes. Creation of a real electron in this model is equivalent to
excitation an infinite number of plasmons. Because of that, the space and time dependence
of density (and spin) correlation functions are substantially different from the ones for non-
interacting systems. That manifests itself in various kinetic quantities. For example, the
Drude conductivity is predicted to vary as power law with temperature.

The Luttinger liquid model which was previously used for 1D organic conductors now
became important for high-mobility quantum wires, as well as for edge states under con-
ditions of quantum Hall effect (see below). One can find a good review of this model in
Ref. [16].

A 1D quantum wire is appropriately characterized by a conductance. It the absence
of interactions, the conductance of an ideal single-mode quantum wire, adiabatically con-
nected to leads, is quantized, G = 2e2/h. In the presence of a scatterer, the conductance
drops to G = 2e2T/h, where T is the transmission coefficient.

The electron-electron interaction modifies dramatically the low-energy excitations in
a quantum wire that leads to striking predictions for the transport. The new features
manifest itself only if there is one (or several) scatterers inside the quantum wire - otherwise
the correlation effects are canceled out at the contacts between the interacting quantum
wire and non-interacting reservoirs. All that together leads to a rich and very interesting
physical picture.

To get a flavor of the theory 1 let us consider a spinless electrons hopping on 1D lattice
with the Hamiltonian

H = −t
∑
j

c†jcj+1 +
V

2

∑
j

c†jcjc
†
j+1cj+1 + h.c. . (12.10)

When the interaction V = 0 this Hamiltonian can be diagonalized as Ek = −t cos k, |k <
π. The low-energy excitation exist near±kF . Consider a single particle excitation near +kF
where we remove one electron with k < kF and place it into a free state with k + q > kF .
Then the energy of excitation is ~ωk = ~q vF . Adding a similar state near −kF we have
a situation similar to phonons in one dimension. When the interaction is turned on this
dispersion law remains, however the velocity is renormalized.

Linear spectrum implies a boson-like description. Mathematically in can be done using

1Here we follow Ref. [16].
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(Jordan-Wigner) canonical transform,

cj = exp

(
iπ
∑
k>j

c†kck

)
bj ,

that keeps the Hamiltonian (12.10) in the same from with replacement c → b. One can
check that the b operators at different lattice points commute, and therefore they are bosons.
Now, the boson operators can be approximately decoupled as bj →

√
nj exp(iφj) , nj ≡ c†jcj

Then we can proceed to continuum limit, focusing on scales long compared to the lattice
constant. In this way we replace

φj → φ(x) , nj → ρ̃(x) .

Extracting from the total electron density its average value, ρ0 = kF/π and introducing the
“displacement” operator, θ, as ρ̃−ρ0 = ∂xθ(x)/π we arrive at the phonon-like commutation
rule,

[φ(x), θ(x′)] =
iπ

2
δ(x− x′) .

We observe that ∂xφ is the momentum conjugate to θ. As a result, we arrive at the effective
Hamiltonian,

H =
v

2π

[
g(∂xφ)2 + g−1(∂xθ)

2
]
. (12.11)

From the commutation relations it can be seen that the Hamiltonian leads to the equation
of motion

∂2
t θ = v2∂2

xθ

and a similar equation for φ. the velocity v, as well as an additional dimensionless constant
g depend on the strength of interaction. For non-interacting electrons, v = vF and g = 1.

It is convenient to expand the original Fermion operator into two part corresponding
to the motion around the points ±kF ,

φ(x) ≈ ψR + ψL = ekF xeiΦR + e−kF xeiΦl00 ,

where ΦR/L ≡ φ± θ. These two field commute with one another and satisfy the relations,

[ΦR(x),ΦR(x′)] = −[ΦL(x),ΦL(x′)] = iπ sgn (x− x′) .

The right and left moving electron densities can be reconstructed as

NB/L = ±∂xΦR/L .

Then we can rewrite the Hamiltonian (12.11) as

H = πv0[N2
R +N2

L + 2λNRNL] (12.12)
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with

v0 =
v

2

(
g +

1

g

)
, λ =

1− g2

1 + g2
.

This Hamiltonian describes interacting system of right and left moving electrons. We
identify v0 to vF , the case g < 1 corresponds to λ > 0 (repulsion) while g > 1 corresponds
to attraction.

It is not straightforward how one can relate the parameters v and g with the original
lattice model because we have only the effective theory for low-energy excitations. There
are analytical expressions only for some models, e. g. for the case of long-range interaction
comparing to the scale k−1

F .
A very important point is that the parameter g has a physical meaning of dimensionless

(in units e2/h per spin) conductance of an infinite ideal Luttinger liquid. That can been
traced introducing new variables, φR/L = gφ± θ, that diagonalize the Hamiltonian (12.10)
as

H =
πv

g

(
n2
R + n2

L

)
, nR/L = ± 1

2π
∂xφR/L . (12.13)

The operators nR/L correspond to the densities of right and left moving interacting elec-
trons. The Hamiltonian allows chiral general solutions f(x ± vt). Now we can raise the
chemical potential of right chiral mode nR by an amount µR Them δH = −eµRnR, and
minimizing (12.13) we get nR = (ge/2πv)µR. Since the additional current to the right is
IR = enRv we get

G = g
e2

h
. (12.14)

As is was already mentioned, in a quantum wire it is impossible to couple only to one
chiral mode. As a result, the d.c. conductance of a finite Luttinger liquid wire coupled
to noninteracting leads appears the same as for noninteracting case. However, interaction
effects can be revealed in a.c. experiments, as well as in the presence of some scatterers.
Because of long-range correlations, the scatterers “undress” the excitations of interacting
systems. As a result, may interesting and important effects can be observed. In particular,
the interaction leads to a strong renormalization of density of states near an obstacle. For
example, if the Luttinger liquid wire has a large barrier with low transmission coefficient
T0 one can employ the results for the density of states in a semi-infinite liquid. That results
in the nonlinear current-voltage curve at low temperatures.

I ∝ T0|V |2(g−1)/g V → G(V ) ≡ dI

dV
∝ T0|V |2(g−1)/g .

Thus, got the repulsive case the linear conductance is zero. At finite temperature it does
exist. However it is proportional to T 2(g−1)/g. It the case of weak scattering the results are
substantially different.

There are several experiments where some deviations from the predictions of single-
electron theory were observed, such as unusual conductance quantization and anomalous
temperature dependences. Unfortunately, the electron-electron correlations are effectively
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destroyed by disorder and electron-phonon scattering. Therefore, to observe the interac-
tion effect one needs extremely pure samples and low temperatures. The results of such
experiment is demonstrated in Fig. 12.10.

The concept of Luttinger liquid is specifically important for quantum Hall effect sys-
tems. We shall see that near the edges of a Hall bar a specific edge states appear which
can be described by the above mentioned model. This system is much more pure that
quantum wires, and interaction effects are crucially important. We are going to discuss
quantum Hall systems later.
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Nonuniversal Conductance Quantization in Quantum Wires
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1Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
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We have measured the transport properties of high-quality quantum wires fabricated in GaAs-AlGaAs
by using cleaved edge overgrowth. The low temperature conductance is quantized as the electron
density in the wire is varied. While the values of the conductance plateaus are reproducible, they
deviate from multiples of the universal value of2e2�h by as much as 25%. As the temperature or dc
bias increases the conductance steps approach the universal value. Several aspects of the data can be
explained qualitatively using Luttinger liquid theory although there remain major inconsistencies with
such an interpretation. [S0031-9007(96)01675-4]

PACS numbers: 73.20.Dx, 73.23.Ad, 73.23.Ps, 73.50.Jt

One-dimensional (1D) electronic systems, so-called
Luttinger liquids, are expected to show unique transport
behavior as a consequence of the Coulomb interaction be-
tween carriers [1–4]. Even for Coulomb energies smaller
than the electron kinetic energy correlated electron behav-
ior is expected. Because of the large quantum mechani-
cal zero point motion of the electrons, these correlations
are short ranged and their spatial extent is expected to
increase in a power law manner as the system’s tempera-
ture is lowered [4]. The longer correlation length causes
the system to be more susceptible to pinning by local im-
purities. Therefore the conductance of a 1D system is
expected to be suppressed at low temperature even for a
wire with just a few impurities [4–6]. This remarkable
results as well as many other non-Fermi liquid properties
of the Luttinger model remain largely untested by experi-
ments due to the lack of a suitable 1D wire [7].

One of the fingerprints of a noninteracting 1D conduc-
tor is its quantized conductance in multiples of the univer-
sal valueGO � 2e2�h [8]. This quantization results from
an exact compensation of the increasing electron velocity
and the decreasing density of states as the number of carri-
ers increases. Therefore, as subsequent 1D electronic sub-
band are filled with electrons, the conductance appears as a
series of plateaus or steps with values equal toGQ multi-
plied by the number of partly occupied wire modes�N�.

In an earlier publication, mainly focusing on our novel
wire fabrication process, we determined the transport
mean free path as well as the energy and mode spec-
trum in the wire using magneto-transport spectroscopy
[9]. The exceptionally long transport mean free path
in excess of10 mm and the exceedingly large subband
spacing of 20 meV make these wires ideal for studying
effects of electron-electron�e-e� interactions in 1D. Here
we present results of such an investigation as temperature
and bias voltage are varied.

Transport through the wires at low temperatures (0.3 K)
presents a significant mystery. Although the wire’s con-
ductance is quantized in equal steps showing plateaus that
are flat to within 5%, the quantized conductance is re-

producibly lower thanNGQ . This reduction is of fixed
amount for a particular wire width and can be as large as
25%. At higher temperatures and dc biases the conduc-
tance approachesNGQ. We discuss three different mod-
els to put our unexpected findings in their proper context.
While some aspects of the data can be reproduced quali-
tatively, none of the scenarios provides a satisfactory in-
terpretation of all our observations.

The exceptional quality of the 1D wires is central to our
ability to obtain high quality, reproducible data. For this
reason we reiterate the intricate fabrication process.

Wire fabrication by cleaved edge overgrowth [10] and
the unique,in situ contacting scheme are shown in Fig. 1.
The starting point is a modulation doped GaAs quantum
well of 14, 25, or 40 nm thickness embedded between two

FIG. 1. (a) Wire preparation by cleaved edge overgrowth of
GaAs-AlGaAs by molecular-beam epitaxy. For details see text.
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(a) Wire preparation by cleaved edge overgrowth of GaAs-AlGaAs by MBE. The wire is
fabricated by cleaving the specimen [see also panel (b)]. Edge states (d) form the quantum
wire. Panels (e) and (f) show different charge distributions for different top voltages. The
panel (c) shows a blowup of critical device region. The mean free path is estimated as 10
µm, the length of the channel is about 2 µm.
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thick AlGaAs layers and doped from the top [Fig. 1(a)].
The resulting two-dimensional electron gas (2DEG) re-
sides 500 nm below the top surface, has an electron den-
sity n � �1 2� 3 1011 cm22, and a mobility m $ 3 3
106 cm2�V sec. A long and narrow evaporated tungsten
stripe [Fig. 1(a)] will later define the 1D wire region. The
quantum wire itself is fabricated by cleaving the spec-
imen in ultrahigh vacuum and overgrowing the smooth
cleavage plane with a second modulation doping sequence
[Figs. 1(a) and 1(b)]. This introduces electrons at the edge
of the quantum well [see Fig. 1(d)] creating one or more
confined edge states along the cleave. Strong overlap be-
tween the 2DEG and the edge states couple both systems
intimately along the entire edge. The 1D wire region is
obtained by decoupling the edge states from the 2DEG
with the help of the tungsten gate �T �, which, after the
cleave, extends exactly to the edge of the quantum well.
Figure 1(c) shows a blowup of the critical device region
under suitable bias conditions. In essence, the top gate (T)
separates the 2DEG into two sheets that connect, through
the edge states, to the 1D wire. The side gate (S), only
200 nm from the cleaved edge, primarily serves to vary
the electrons density along the edge.

Figures 1(d), 1(e), and 1(f ) show a sequence of
schematic cross sections of charge distributions in the
wire region for different top-gate voltages VT . As VT is
biased increasingly negative the 2DEG is separated and
the 1D wire becomes firmly confined in two dimensions:
in the z direction by the quantum well and in the y direc-
tion by the strong triangular potential of the cleaved-edge
modulation-doping sequence. Electrons in such cleaved
edge overgrowth wires are confined on three sides by
atomically smooth barriers and on the fourth side by a
strong electric field. It is important to realize that the
top gate affects only the density in the wire region and
the side gate affects the density in the entire edge. For
strongest 1D confinement the top gate is biased negatively
and the side gate strongly positively pushing the electrons
against the cleaved edge of the quantum well.

Electronic transport measurements on the quantum wires
are performed in a pumped He3 cryostat using an excita-
tion voltage of Vex � 10 mV at 16 Hz in the contact con-
figuration shown in Fig. 1(c). Figure 2 shows the linear
response conductance of a wire embedded in a 25 nm
quantum well as a function of VT . Clear conductance
quantization is observed. Importantly, the values of the
conductance plateaus are markedly different from NGQ

(dotted lines) and seem to be quantized in units of 0.85 3
�2e2�h�. This nonuniversal value is reproducible to within
5% in all wires fabricated from the same quantum well ma-
terial even if it was cleaved and overgrown in separate runs.
However, wires made with different quantum well widths
give different values. The 40, 25, and 14 nm quantum
wells have prefactors 0.9, 0.85, and 0.8, respectively. The
plateaus are flat to within 5% and their existence demon-
strates that deviations from universality are independent of
electron density in the wire. Constant step height between

FIG. 2. Linear response conductance of a 2 mm long wire
in a 25 nm quantum well vs the top-gate voltage �VT �
measured at a temperature of 0.3 K. The solid line is the
measured conductance. The dashed curve is the measured
conductance multiplied by an empirical factor of 1.15. Inset:
Linear response conductance of the last plateau for wires of
different lengths fabricated consecutively along the edge of a
single 25 nm cleaved edge overgrowth specimen. The numbers
denote the wire length in microns.

plateaus rules out a single series resistance as the origin of
nonuniversality. In such a case the step height would have
to decrease for the higher modes.

The effect of temperature on the wire conductance is
shown in Fig. 3. At high temperatures the higher plateaus
degrade due to the thermal population of the more closely
spaced upper subbands [8]. However, the lowest plateau
remains flat even at 20 K with a value approaching GQ at
high enough temperatures. The rigid rise, preserving the
plateau, suggests once more that there is no dependence
on the electron density in the wire. The temperature
dependence of the higher plateaus, GN �T �, is stronger and
appears to be given by GN �T� � NG1�T �. This suggests
that each mode contributes an equal amount to the total

FIG. 3. Differential conductance of a 2 mm long wire in a
25 nm quantum well vs top-gate voltage �VT . The different
curves correspond to different temperatures. Inset: The differ-
ential conductance vs temperature for a value of VT marked by
the arrow.

4613

Linear response conductance of a 2 µm log wire in a 25 nm quantum well vs. the top-gate
voltage (VT ) measured at a temperature 0.3 K.Solid line is the measured conductance. The
dashed curve is the measured conductance multiplied by an empirical factor 1.15. Inset:
Linear response conductance of the last plateau for wires of different lengths fabricated
consecutively along the edge of a single 25 nm cleaved edge overgrowth specimen. The
numbers denote the wire lengths in microns.

Figure 12.10: Non-universal Conductance Quantization in Quantum wires [From A. Ya-
coby, et al., Physical Review Letters, 77, 4612 (1996).]



Chapter 13

Tunneling and Coulomb blockage

13.1 Tunneling

Modern technology allows to fabricate various structures involving tunneling barriers. One
of the ways is a split-gate structure. Such a system can be considered as a specific example

Gate

Gate

Barriers

Figure 13.1: Split-gate structure allowing resonant tunneling.

of series connection of to obstacles. The complex amplitude of the wave transmitted
through the whole system is

D =
t1t2e

iφ

1− e2iφr2r′1
=

t1t2e
iφ

1− eθ
√
R1R2

, (13.1)

where θ = 2φ+ arg(r2r
′
1). It is clear that the transmittance

T =
T1T2

1 +R1R2 − 2
√
R1R2 cos θ

(13.2)

is maximal at some specific value of θ where cos θ = 1, the maximal value being

Tmax =
T1T2

(1−
√
R1R2)2

. (13.3)
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This expression is specifically simple at T1, T2 � 1,

Tmax =
4T1T2

(T1 + T2)2
. (13.4)

Thus we observe that two low-transparent barriers in series can have a unit transmittance
if they have the same partial transparencies, T1 = T2 = T . The reason of this fact in
quantum interference in the region between the barriers which makes wave functions near
the barriers very large to overcome low transmittance of each barrier.

An important point is that the phase θ gained in the system is a function of the electron
energy. Thus near a particular value E(r) defined by the equality

cos θ(E(r)) = 0→ θ(E
(r)
k ) = 2πk

one can expand cos θ as

1− 1

2

(
∂θ

∂E

)2 (
E − E(r)

)2
.

Thus at low transmittance we arrive at a very simple formula of a Breit-Wigner type,

T ≈ T1T2

(T1 + T2)2/4 + (θ′)2 (E − E(r))
2

=
Γ1Γ2

(Γ1 + Γ2)2/4 + (E − E(r))
2 . (13.5)

Here we denote θ′ ≡ (∂θ/∂E)E−E(r) and introduce Γi = Ti/|θ′|.
The physical meaning of the quantities Γi is transparent. Let us assume that all the

phase shift is due to ballistic motion of an electron between the barriers. Then,

θ = 2ka = 2ah−1
√

2mE → θ′ =
a

~

√
2m

E
=

2a

~v

where v is the electron velocity. As a result, the quantity Γi can be rewritten as Γ = ~νaTi ,
where νa = v/2d is the frequency of oscillations inside the inter-barrier region, the so-called
attempt frequency. Thus it is clear that Γi are the escape rates through i-th barrier.

To specify the transition amplitudes let us consider a 1D model for a particle in a well
between two barriers. We are interested in the scattering problem shown in Fig. 13.2. To
find a transmission probability one has to match the wave functions and their gradients at
the interfaces 1-4 between the regions A-C. They have the following form

eikx + re−ikx in the region A;
a1e

κBx + a2e
−κBx in the region B;

b1e
ikx + b2e

−ikx in the region C;
c1e

κDx + c2e
−κDx in the region D;

teikx in the region E

.
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Figure 13.2: On the resonant tunneling in a double-barrier structure.

Here

k = ~−1
√

2mE , κi =
√
κ2

0i − k2 , κ0i = ~−1
√

2mUi .

The transmission amplitude is given by the quantity t while the reflection amplitude – by
the quantity r. In fact we have 8 equations for 8 unknowns (r, t, ai, bi, ci), so after some
tedious algebra we can find everything. For a single barrier one would get

T (E) =
4k2κ2

κ4
0 sinh2(κd) + 4k2κ2

≈ k2κ2

κ4
0

e−2κd .

Here d is the barrier’s thickness. So the transparency exponentially decays with increase of
the product κd. The calculations for a double-barrier structure is tedious, so we consider
a simplified model of the potential

U(x) = U0d[δ(x) + δ(x− a)] .

In this case we have 3 regions,

eikx + re−ikx x < 0 .
A sin kx+B cos kx 0 < x < a ,
teik(x−a) x > a

(13.6)

The matching conditions for the derivatives at the δ-functional barrier has the form

ψ′(x0 + 0)− ψ′(x0 − 0) = κ2dψ(x0) . (13.7)

Here κ2 = 2mU0/~2. One can prove it by integration of the Schrödinger equation

(~2/2m)∇2ψ + U0dδ(x− x0)ψ = Eψ

around the point x0. Thus we get the following matching conditions

B = 1 + r ,

kA− ik(1− r) = κ2a(1 + r) ,

A sin ka+B cos ka = t ,

ikt− k(A cos ka−B sin ka) = tκ2a .
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First one can easily see that there is a solution with zero reflectance, r = 0. Substituting
r = 0 we get the following requirement for the set of equation to be consistent

k = k0 , tan k0a = −2k0

κ2d
. (13.8)

We immediately observe that at that k |t| = 1 (total transmission). At strong enough
barrier, κd� 1, this condition means

k0a = π(2s+ 1) , s = 0,±1, ..

Physically, that means that an electron gains the phase 2πs during its round trip (cf. with
optical interferometer). Thus two barriers in series can have perfect transparency even if
the transparency of a single barrier is exponentially small. The physical reason is quantum
interference.

The condition (13.8) defines the energy

E0 =
~2k2

0

2m

where the transparency is maximal. Near the peak one can expand all the quantities in
powers of

k − k0 ≈
E − E0

(∂E/∂k)k0
≈ k0

E − E0

2E0

.

The result for a general case can be expressed in the Breit-Wigner form

T (E) =
ΓLΓR

(E − E0)2 + 1
4
(ΓL + ΓR)2

.

Here ΓL(R)/~ are the escape rates for the electron inside the well to the left(right) lead.
They are given by the attempt frequency v0/2a = ~k0/2ma times the transparency of a
given barrier.

Of course, if voltage across the system is zero the total number of electrons passing along
opposite directions is the same, and the current is absent. However, in a biased system
we obtain the situation shown in Fig. 13.3. Negative differential conductance, dJ/dV ≤ 0,
allows one to make a generator. One can also control the system moving the level E0 with
respect to the Fermi level by the gate voltage. In this way, one can make a transistor.

Commercial resonant tunneling transistors are more complicated than the principle
scheme described above. A schematic diagram of a real device is shown in Fig. 13.4. In
this device resonant tunneling takes place through localized states in the barrier. There
exist also transistors with two quantum wells where electrons pass through the resonant
levels in two quantum wells from the emitter to collector if the levels are aligned. The
condition of alignment is controlled by the collector-base voltage, while the number of
electrons from emitter is controlled by the base-emitter voltage.
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Figure 13.3: Negative differential conductance in double-barrier resonant-tunneling struc-
ture.

13.2 Coulomb blockade

Now let us discuss a specific role of Coulomb interaction in a mesoscopic system. Consider
a system with a dot created by a split-gate system (see above).

If one transfers the charge Q from the source to the grain the change in the energy of
the system is

∆E = QVG +
Q2

2C
.

Here the first item is the work by the source of the gate voltage while the second one is the
energy of Coulomb repulsion at the grain. We describe it by the effective capacitance C to
take into account polarization of the electrodes. The graph of this function is the parabola
with the minimum at

Q = Q0 = −CVG ,
So it can be tuned by the gate voltage VG. Now let us remember that the charge is
transferred by the electrons with the charge −e. Then, the energy as a function of the
number n of electrons at the grain is

∆E(n) = −neVG +
n2e2

2C
.

Now let us estimate the difference

∆E(n+ 1)−∆E(n) = −eVG + n
e2

C
.

We observe that at certain values of VG,

VGn = n
e

C
, (13.9)

the difference vanishes. It means that only at that values of the gate voltage resonant
transfer is possible. Otherwise one has to pay for the transfer that means that only inelastic
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Figure 13.4: Schematic diagram of a Si MOSFET with a split gate (a), which creates a
potential barrier in the inversion layer (b). In the right panel oscillations in the conductance
as a function of gate voltage at 0.5 K are shown. They are attributed to resonant tunneling
through localized states in the barrier. A second trace is shown for a magnetic field of 6
T. From T. E. Kopley et al., Phys. Rev. Lett. 61, 1654 (1988).

processes can contribute. As a result, at

kBT ≤
e2

2C

the linear conductance is exponentially small if the condition (13.9) is met. This phe-
nomenon is called the Coulomb blockade of conductance.

As a result of the Coulomb blockade, electron tunnel one-by-one, and the conductance
vs. gate voltage dependence is a set of sharp peaks. That fact allows one to create a
so-called single-electron transistor (SET) which is now the most sensitive electrometer.
Such a device (as was recently demonstrated) can work at room temperature provided the
capacitance (size!) is small enough.

Coulomb blockade as a physical phenomenon has been predicted by Kulik and Shekhter [26].
There are very good reviews [13, 14, 15] about single-change effects which cover both prin-
cipal and applied aspects. Below we shall review the simplest variant of the theory, so
called “orthodox model”.

A simple theory of single charge tunneling

For simplicity, let us ignore discrete character of energy spectrum of the grain and assume
that its state is fully characterized by the number n of excess electrons with respect to
an electrically neutral situation. To calculate the energy of the systems let us employ
the equivalent circuit shown in Fig. 13.5. The left (emitter) and right (collector) tunnel
junctions are modeled by partial resistances and capacitances.
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Figure 13.5: Equivalent circuit for a single-electron transistor. The gate voltage, Vg, is
coupled to the grain via the gate capacitance, Cg. The voltages Ve and Vc of emitter and
collector are counted from the ground.

The charge conservation requires that

− ne = Qe +Qc +Qg

= Ce(Ve − U) + Cc(Vc − U) + Cg(Vg − U) , (13.10)

where U is the potential of the grain. The effective charge of the grain is hence

Q = CU = ne+
∑
i=e,c,g

CiVi , C ≡
∑
i

Ci .

This charge consists of 4 contributions, the charge of excess electrons and the charges
induced by the electrodes. Thus, the electrostatic energy of the grain is

En =
Q2

2C
=

(ne)2

2C
+
ne

C

∑
i

CiVi +
1

2C

(∑
i

CiVi

)2

. (13.11)

The last item is not important because it is n-independent. In the stationary case, the
currents through both junctions are the same. Here we shall concentrate on this case. In
the non-stationary situation, an electric charge can be accumulated at the grain, and the
currents are different.

To organize a transport of one electron one has to transfer it first from emitter to grain
and then from grain to collector. The energy cost for the first transition,

En+1 − En =
(2n+ 1)e2

2C
+
e

C

∑
i

CiVi (13.12)

must be less than the voltage drop eVe. In this way we come to the criterion

En − En+1 + eVe ≥ 0 . (13.13)

In a similar way, to organize the transport from grain to collector we need

En+1 − En − eVc ≥ 0 . (13.14)
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The inequalities (13.14) and (13.13) provide the relations between Ve, Vc and Vg to make
the current possible. For simplicity let us consider a symmetric system, where

Ge = Gc = G, Ce = Cc ≈ C/2 (Cg � C), Ve = −Vc = Vb/2

where Vb is bias voltage. Then we get the criterion,

Vb ≥ (2n+ 1)|e|/C − 2(Cg/C)Vg .

We observe that there is a threshold voltage which is necessary to exceed to organize
transport. This is a manifestation of Coulomb blockade. It is important that the threshold
linearly depends on the gate voltage which makes it possible to create a transistor. Of
course, the above considerations are applicable at zero temperature.

The current through the emitter-grain transition we get

I = e
∑
n

pn [Γe→g − Γg→e] . (13.15)

Here pn is the stationary probability to find n excess electrons at the grain. It can be
determined from the balance equation,

pn−1Γnn−1 + pn+1Γnn+1 −
(
Γn−1
n + Γn+1

n n
)
pn = 0 . (13.16)

Here

Γnn−1 = Γe→g(n− 1) + Γc→g(n− 1) ; (13.17)

Γnn+1 = Γg→e(n+ 1) + Γg→c(n+ 1) . (13.18)

The proper tunneling rates can be calculated from the golden rule expressions using tun-
neling transmittance as perturbations. To do that, let us write down the Hamiltonian
as

H0 = He +Hg +Hch +Hbath ;

He,c =
∑
kσ

εkc
†
kσckσ ,

Hg =
∑
qσ

εqc
†
qσcqσ ,

Hch = (n̂−Q0)/2C , n̂ =
∑
qσ

c†qσcqσ −N+ .

Here Hbath is the Hamiltonian for the thermal bath. We assume that emitter and collector
electrodes can have different chemical potentials. N+ is the number of positively charged
ions in the grain. To describe tunneling we introduce the tunneling Hamiltonian between,
say, emitter and grain as

He↔g =
∑
k,q,σ

Tkqc
†
kσcqσ + h.c.
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Applying the golden rule we obtain

Γe→g(n) =
Ge

e2

∫ ∞
−∞

dεk

∫ ∞
−∞

dεq fe(εk)[1− fg(εq)] δ(En+1 − En − eVe) .

Here we have introduced the tunneling conductance of e− g junction as

Ge = (4πe2/~) ge(εF )gg(εF )VeVg 〈|Tkq|2〉 .

along the Landauer formula, Ve,g being the volumes of the lead and grain, respectively. In
this way one arrives at the expressions

Γe→g(n, Ve) = Γg→e(−n,−Ve) =
2Ge

e2
F(∆+,e) ; (13.19)

Γg→c(n, Vc) = Γc→g(−n,−Vc) =
2Gc

e2
F(∆−,c) . (13.20)

Here
F(ε) =

ε

1 + exp(−ε/kT )
→ εΘ(ε) at T → 0 ,

while

∆±,µ(n) = En − En±1 ± eVµ =
1

C

[
e2

2
∓ en∓ e

∑
i

CiVi

]
± eVµ

is the energy cost of transition. The temperature-dependent factor arise from the Fermi
occupation factor for the initial and final states, physically they describe thermal activation
over Coulomb barrier. The results of calculation of current-voltage curves for a symmetric
transistor structure are shown in Fig. 13.6. At low temperatures and low bias voltages,

Figure 13.6: The current of a symmetric transistor as a function of gate and bias voltage
at T = 0 (from the book [5]).

V C/e < 1, only two charge states play a role. At larger bias voltage, more charge states are
involved. To illustrate this fact, a similar plot is made for symmetrically biased transistor,
Ve = −Vg = V/2, for different values of Q0, Fig. 13.7.
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Figure 13.7: The current of asymmetric transistor, Ge = 10Gc, as a function of bias voltage
at T = 0 and different Q0.e = 0, 0.25 and 1 (from the book [5]). At Q0 = 0 the Coulomb
blockade is pronounced, while at Q0/e = 0.5 the current-voltage curve is linear at small
bias voltage. The curves of such type are called the Coulomb staircase.

Cotunneling processes

As we have seen, at low temperature the sequential tunneling can be exponentially sup-
pressed by Coulomb blockade. In this case, a higher-order tunneling process transferring
electron charge coherently through two junctions can take place. For such processes the
excess electron charge at the grain exists only virtually.

A standard next-order perturbation theory yields the rate

Γi→f =
2π

~

∣∣∣∣∣∑
ψ

〈i|Hint|ψ〉〈ψ|Hint|i〉
Eψ − Ei

∣∣∣∣∣
2

δ(Ei − Ef ) .

Two features are important.

• There are 2 channel which add coherently: (i) e → g, g → c with the energy cost
∆−,e(n+ 1), and (ii) g → c, e→ g with the energy cost ∆+,c(n− 1).

• The leads have macroscopic number of electrons. Therefore, with overwhelming
probability the outgoing electron will come from a different state than the one which
the incoming electron occupies. Hence, after the process an electron-hole excitation
is left in the grain.

Transitions involving different excitations are added incoherently, the result being

Γcot =
~GeGc

2πe4

∫
e

dεk

∫
g

dεq

∫
g

dεq′

∫
c

dεk′ f(εk)[1− f(εq)]f(εq′)[1− f(εk′)]

×
[

1

∆−,e(n+ 1)
+

1

∆+,c(n− 1)

]2

δ(eV + εk − εq + εq′ − εk′) .
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At T = 0 the integrals can be done explicitly, and one obtains

Γcot =
~GeGc

12πe

[
1

∆−,e(n+ 1)
+

1

∆+,c(n− 1)

]2

V 3 for eV � ∆i .

As a result, the current appears proportional to V 3 that was observed experimentally. The
situation is not that simple for the degenerate case when ∆i = 0. In that case the integrals
are divergent and the divergence must be removed by a finite life time of a state. A detailed
treatment of that case is presented in the book [5].

There is also a process when an electron tunnels through the system leaving no excita-
tions in the grain. The probability of such elastic cotunneling has a small factor (ggVg)−1.
However, it leads to the current, proportional to V , thus it can be important at very low
bias voltage.

Concluding remarks

There are many experiments where Coulomb-blockaded devices are investigated. Probably
most interesting are the devices where tunneling takes place through a small quantum
dot with discrete spectrum. An example of such device is shown in Fig. 13.8. The linear
conductance of such a structure as a function of the gate electrode C is shown in Fig. 13.9
An important point is that at present time the devices can be fabricated so small that the
criterion kT ≤ e2/C can be satisfied at room temperatures. Now several room temperature
operating Coulomb blockade devices were reported. Among them are devices consisting
of large molecules with the probes attached in different ways. This is probably a starting
point for new extremely important field - molecular electronics. Such devices are extremely
promising both because they are able to operate at room temperatures and because they
will allow high integration. This is one of important trends. Another one concerns with
single-electron devices which include superconducting parts. There is a lot of interesting
physics regarding transport in such systems.
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Figure 13.8: (a) A typical structure of a quantum dot. The depleted (shaded) areas are
controlled by electrodes 1-4, C, and F. Electrode C also controls the electrostatic potential
in the dot. (b) a model of a quantum dot. From [7].

Figure 13.9: Conductance of a quantum dot vs. the voltage of gate electrode C. From L.
P. Kouwenhoven et al., Z. Phys. B 85, 367 (1991).



Chapter 14

Quantum Hall Effect and Adiabatic
Transport

14.1 Ordinary Hall effect

In a magnetic field electrons’ trajectories are curved because of Lorentz force. As a result,

j = σ0 (E + [j×H]/nec) , σ0 = ne2τ/m .

One can solve this vector equation to obtain the resistivity tensor

ρ̂ =

[
ρ0 H/enc

−H/enc ρ0

]
, ρ0 = 1/σ0 .

The inversion of this tensor gives the conductivity tensor with the components (in 2d case)

σxx =
σ0

1 + (ωcτ)2
, σxy =

nec

H
+

1

ωcτ
σxx . (14.1)

There is a striking similarity between the quantization of the conductance of a ballistic
channel in units of e2/h and of the Hall conductance.

14.2 Integer Quantum Hall effect - General Picture

In the quantum case one faces the Landau levels. We have seen that the number of states
per unit area for a filled Landau level is

nH = 1/2πa2
H = eH/ch .

Usually the filling factor

ν = n/nH

285
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for a fractionally filled level is introduced. The total degeneracy of a Landau level in the
absence of disorder is N = AnB = A/2πa2

H where A is the sample area. The average
density of states is AnB/~ωc.

If one expresses the Hall component of the conductivity tensor through the filling factor
ν and assumes ωcτ → ∞ he obtains σxy = νe2/h. This result seems very fundamental.
Indeed, according to the electrodynamics, one can eliminate the electric field on a spatially-
homogeneous system by assuming a drift velocity

v = c [E×H]/H2 .

Thus, the result seems fundamental independently whether classical of quantum mechanics
is discussed.

Experimentally, the following picture was observed. It is clear that only violation of
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Figure 14.1: Schematic dependence of Hall resistance on filing factor.

the translational invariance can lead to such a picture. Thus one has to consider either
impurities, or edges.

The generally accepted picture is as follows. Impurities violate the translational invari-
ance. As a result, py is not a good quantum number any more, and Landau levels smear
into sub-bands. The crucial point that the most of the states are localized and cannot carry
the current.

To make the analysis as simple as possible let us discuss a 2d electrons in crossed electric
and magnetic fields (E ‖ x, H ‖ z) and a single impurity at the point r0 = {x0, y0}. As
we have seen (see Sec. 6.9, Shubnikov-de Haas effect), the weak electric field leads to the
energy shift pyv where v = cE/H is the drift velocity in y-direction, as well as to the shift in
the center-of-motion co-ordinate is shifted in x-direction by v/ωc. Using the corresponding
states as a basis, we can now expand the exact wave function as

Ψ =
∑
npy

cnpyψnpy(r) .
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We get ∑
npy

cnpy

[
Ĥ0 + V

]
ψnpy =

∑
npy

cnpy
[
Enpy + V

]
ψnpy = E

∑
npy

cnpyψnpy .

Let us now express the potential as

V = λδ(r− r0)

where λ is a proper coupling constant. Then one can write

cnpy = λ
ψ∗npy(r0)Ψ(r0)

E − Enpy
.

Now we recall that
∑

npy
cnpyψnpy(r0) = Ψ(r0). Substituting the previous expression into

this equation and dividing by Ψ(r0, we get the exact condition for eigen energy

1

λ
=
∑
n,py

|ψn,py(r0)|2

E − En,py
.

The right hand side of this equation as a function of the energy is shown below One can
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Figure 14.2: Formation of localized states in 2DEG in magnetic field.

find from this equation one completely localized state for each Landau level, its energy
shift being proportional to λ. The lowest such state can be represented as (for r0 = 0)

ψloc ∼ exp

[
ixy

2a2
H

− x2 + y2

4a2
H

]
.

The other levels are almost unperturbed and extended.
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Now let us take into account only the lowest Landau level which we assume to be
completely filled. We have one localized state and N−1 extended ones where N = A/2πa2

H ,
which we can label by the discrete quantum number k as

k =
pyLy
2π~

.

Each mode behaves just as the transverse mode in a quantum channel, and the current is
given as

I = −2

h

∑
nk

(En,k+1 − Enk) = −2

h

∑
nk

(En,kmax − En,kmin
) .

It is not trivial to prove this equation. It was done by R. Prange using gauge considerations.

Proof :
The main procedure is a s follows. We have specified periodic boundary conditions
along y-axis. Consider the system as a cylinder and introduce an auxiliary constant
vector-potential Ã along y axis as

Ãy =
~c
e

2πα

Ly
. (14.2)

Increase of the parameter α by one corresponds to increase the magnetic flux in the
sample by 1 quantum, Φ0.

If one applies periodic boundary conditions then the vector-potential such as given
by Eq. (14.2) can be eliminated by the gauge transform

ψ → exp(2παy/Ly)ψ

only if α is integer. Thus the extended states which extend from 0 to Ly must
depend on α while localized states satisfy boundary conditions automatically since
their amplitude at the boundaries vanish. The extended states in the presence of the
auxiliary have the same form is in its absence, with the replacement

k → k + α .

The vector potential Ã leads to an additional item in the effective Hamiltonian,

δH = −1

c
(I · Ã) .

Thus, the current operator can be written as

Îy = −1

c

∂δH
∂Ãy

= − e
h

∂H
∂α

,
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while the average current is

I = 〈Î〉 = − e
h

d

dα

∑
nk

Enk(α) .

As we have already mentioned, according to the construction of the quantum number
k the introduction of the vector-potential leads to the replacement k → k+ α. Thus

En,k|α=1 = En,k+1|α=0 .

Replacing the derivative by the average value over the region 0 ≤ α ≤ 1 we get the
result given above.

Thus we come to the following picture. as the Fermi level passes the regions of the
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Figure 14.3: Density of states in 2DEG in magnetic field.

extended states the steps in Hall resistance and peaks at the longitudinal resistance occur.
As we have shown, the current is independent of the density of states, only the number of
occupied extended states is important.

Now we have to remember that the state with kmax(kmin) correspond to the upper
(lower) edge of the sample if we map the quantum number k to the centers of gravity of
the states. Thus we come in a natural way to edge states.

14.3 Edge Channels and Adiabatic Transport

The quantization of the conductance of the ballistic channel arises from the finite number of
propagating modes each of which can carry only a very specific current. Thus it is tempting
to consider the modes of an ideal finite system embedded into an external magnetic field. In
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this simplified picture we can obtain some understanding concerning the nature of localized
and extended states.

Let us start from a ideal electron system confined by the potential V (x) in the presence
of the magnetic field H ‖ z. For a single spin component we have the Hamiltonian

H =
p2
x

2m
+

[py + (eH/c)x]2

2m
+ V (x) .

It is natural to look for a solution in the form (H commutes with py!)

|n, k〉 = ψnk(x)eiky

where ~k is the eigenvalue of py. The average velocity for such a state is

vn(k) =

〈
n, k

∣∣∣∣py + (eH/c)x

m

∣∣∣∣n, k〉 =

〈
n, k

∣∣∣∣∂H∂py
∣∣∣∣n, k〉 =

1

~
dEn(k)

dk
.

It is easy to calculate such a velocity for a parabolic confinement,

V (x) =
1

2
mω2

0x
2 .

The result is

v(k) =
~k
M

=
~k
m

1

1 + (ωc/ω0)2
.

To understand what is going on let us consider a classical orbit with the center (X, Y ).
Then one can write

x = X + vy/ωc , y = Y − vx/ωc .

The quantity rc = v/ωc is the cyclotron radius of the orbit. We have two constants of
motion, the energy E and X. In a long strip of width W the trajectories can be classified
as a cyclotron orbits , skipping orbits, or traversing trajectory. In the (X,E) space such
trajectories are separated by the line

(X ±W/2)2 = r2
c .

According to quantum mechanics, the motion is quantized, and we come to the following
picture of quantum terms The cyclotron orbits (solid lines) correspond to Landau level,
and they have zero group velocities. We have not shown traversing trajectories which cor-
respond to higher energies. Dashed lines reproduce two sets of edge states (corresponding
to skipping orbits). These sets carry the currents in opposite directions.

If the Fermi level is situated between the Landau levels, only the edge states can con-
tribute to the current. Their dispersion law can be obtained (approximately) from the
Bohr-Sommerfeld quantization condition,

h−1

∮
px dx+ γ = 2πn , n = 1, 2, ...
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Figure 14.4: Typical electron trajectories in a 2D strip in magnetic field.

Skipping orbits

0

Wave vector, k

E
ne

rg
y

Fermi
level

Figure 14.5: Electron terms in a 2D strip in magnetic field.

One can show that for the rigid boundary the phase shift of the skipping orbit γ = π/2,
while

px = mvx = (eH/c)(Y − y) .

Thus,
1

a2
H

∮
(Y − y) dx = 2π

Φ

Φ0

= 2π
(
n− γ

2π

)
.

Consider an electron at the Fermi level. Its energy consists of (n − 1/2)~ωc (+ spin
contribution which I do not discuss now), as well the the part

EG = εF − (n− 1/2)~ωc

due to electrostatic potential created by the edges, as well as by disorder. In an external
potential, the center of the orbit moves with the drift velocity

vd(R) =
c

eH
[∇V (R)×H]
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which is parallel to the equipotentials. That can be easily shown from classical mechanics
in a magnetic field. The typical spread of the wave function along the guiding center is
spread within the range of magnetic length aH . Now we can map the classical picture to
quantum mechanics according to ~k → −x(eH/c). Thus, if the typical scale of the random
potential of the disorder is greater than the magnetic length, we arrive at the picture.

0

Wave vector, k

E
ne

rg
y

Fermi

level

Egde
Closed

Figure 14.6: Electron terms in the presence of long-range disorder.

Assume that the edges are in a local equilibrium. Thus if there is a difference δζ chemical
potentials between the edges,then each channel contributes (e/h)δζ to the current in the
Hall direction. The system appears robust because to obtain a inter-channel exchange
one needs tunneling with exponentially low probability. Actually we have an almost ideal
ballistic conductor and the only difference with the systems discussed earlier is that the
edge channels with different directions of the current do not overlap in space.

In a typical realistic situation, the contacts are out of local equilibrium and the measured
resistance depends on the properties of contacts. Consider for example, a situation when
the edge channel at the lower edge are in equilibrium at chemical potential EF , while the
edge channel at the upper edge are not in local equilibrium. Then the current at the upper
edge is not equipartitioned between N modes. Let fn is the fraction of the total current I
that is carried by by states above EF in the nth channel at the upper edge, In = fnI. The
voltage contact at the upper edge will measure a chemical potential which depends on how
it is coupled to each of the edge channels. The transmission probability Tn is the fraction
of the current In that is transmitted through the voltage probe to a reservoir at chemical
potential EF + δζ. The incoming current

Iin =
N∑
n

TnfnI, with
∑
n

fn = 1, (14.3)

has to be balanced by an outgoing current,

Iout =
e

h
δζ (N −R) =

e

h
δζ
∑
n

Tn , (14.4)
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since the voltage probe draws no net current. Thus the Hall resistance,

Rh =
δζ

eI
=

h

e2

(∑
n

Tnfn

)(∑
n

Tn

)−1

. (14.5)

The Hall conductance remains quantized only if fn = 1/N , or at Tn = 1. The first case
corresponds to local equilibrium, while the second case corresponds to an ideal contact.
The Landauer-Büttiker formalism forms the basis on which anomalies in the QHE due
to absence of local equilibrium in combination with non-ideal contacts can be treated
theoretically.

This is a simplified picture of the integer quantum Hall effect in the random potential.
The real life is much more complicated. In particular, there exists an extremely interesting
fractional quantum Hall effect, which manifests itself at fractional values of the filling
factor. We do not discuss this effect in the present course.

Role of localization

As we have seen, at H = 0 a 2D system with disorder should have its states localized at
all energies. However, only extended states are sensitive to the flux and can provide the
QHE. At the same time, ranges of energies with only localized states are needed to pin EF
there and have finite plateaus. Thus, introduction of magnetic field must delocalize some
states. As we have seen, extended modes appear near edges. However, extended states in
a magnetic field are present also in the bulk of the conductor.

To discuss this phenomenon let us recall the main relevant quantities. First, let us note
that the condition

ωcτ � 1, or rc � `, rc = vF/0c

for cyclotron motion is fully classical. In terms of quantum mechanical length, aH =√
cH/eH the classical cyclotron radius rc can be written as

rc ∼ kFa
2
H ∼ aH

√
EF~ωc ∼ aH

√
N

where N is the number of full Landau levels. The weak localization regime corresponds to
the inequality

aH � ` ,

while the intermediate regime where aH � rc while rc can be comparable with ` also exists.

Strong magnetic field, ωcτ � 1, rc � `.

As we have discussed, in a uniform electric field the drift velocity directed along [E×H]
appears, vd = c(E/H). This concept can be generalized for the case of a smooth random
potential V (x) with does not change a lot on the scale of cyclotron motion. Then, it rc is
much less than the correlation length d of the random potential, the guiding center moves
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along the equipotential line V (r) = V . If its orbit is closed and embeds the area A(V ),
then the typical frequency is

ωd
2π

=

[∮
dl

vd

]−1

=
2c

H

[∫
dl dx⊥
dV

]−1

=
2c

H

∆V

∆A
,

where dx⊥ is an element of length in the direction of the potential gradient. Such a slow
motion can be quantized for any Landau levels into locally equidistant levels with the
separation ~0d. The area between two quantized orbits is given by the relation

H ∆A =
~c
e

= Φ0 ; ∆A = 2πa2
H .

Thus the flux of H in the area per state in a given Landau level corresponds to a flux
quantum, as for free electron.

Let us assume that the amplitude of the random potential is much less than ~ωc, so
there is no inter-Landau-level mixing. Then the potential energy of a properly quantized
levels should be added to ~ωc(j + 1/2) for jth Landau band. The levels correspond to
the orbits running around the potential “hills”, or inside potential “lakes”. Both kinds
of states are localized. There is one and only one energy, Ec, (in 2D case) at which
the equipotential curves span the whole system (imagine filling up of the potential V (r)
“terrain” with water). The characteristic size of the orbit, ξp, may be defined by the r.m.s.
of the area enclosed by the equipotential contours for the localized states. It must blow up
at E → Ec,

ξp ∼ |E − Ec|−νp , νp & 1 .

Such an orbit provides the way to transfer an electron between the edges.
There is also a very interesting intermediate situation when

aH � `� rc , or ωcτ � 1 .

As was shown by Khmelnitskii (1984), even in this region QHE plateaus can exist which
are irrelevant to Landau levels.

14.4 Fractional Quantum Hall Effect

Fractional quantum Hall effect (FQHE) was discovered by the group of Tsui et Bell Lab-
oratories [31]. Using a high-mobility GaAs/AlGaAs heterostructures they observed quan-
tization of Hall conductance at filling factors ν = 1/3 and 2/3 at very low temperatures
(below 1 K). Later more rich structure, as shown in Figs. 14.7 and 14.8 at fractional
filling factors was discovered. It appears that only account of of Coulomb interaction leads
to understanding of the problem. Now the studies of FQHE belong to the most active
area of research. Below we shall provide a very brief sketch of the problems regarding
electron-electron interaction in magnetic field and FQHE.
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Figure 14.7:

Few electron with Coulomb interaction

The role of electron-electron interaction is determined by the relation between the mean
free distance between electrons, rs, and the Bohr radius, aB = ε~2/me2. At rs � aB one
can use the usual mean field description of interacting electrons, considering screening,
plasmons, charge density waves, etc. However, at rs ≥ aB the interaction energy becomes
larger than the average kinetic energy. As a result, there exists a strong electron-electron
correlation, and the electrons tend to crystallize. It is known that magnetic field enhances
these effects.

To get some understanding let us start with more simple problem of few electrons
in a magnetic field. Historically, these studies appeared important because they led to
discovery of a new state, the incompressible electron liquid, that is believed to transform
into (Wigner) crystal at very low densities.

Two electrons. Let us discuss the case of 2 electrons in a very strong magnetic field,
~ωc ≥ e2/εaH . This inequality means that Landau levels are not mixed by the Coulomb
interaction (see below).

Using symmetric gauge, A = (−Hy/2, Hx/2, 0)and introducing polar coordinates we
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Figure 14.8: Recent results on the fractional quantum Hall effect.

easily obtain zeroth approximation Hamiltonian

H0 = − ~2

2m
∇2 +

mω2
cρ

2

8
+

~ωc
2i

∂

∂ϕ
,

∇2 =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂ϕ2
.

This Hamiltonian commutes with the angular momentum,

lz =
~
i

∂

∂ϕ
.

Thus it is natural to classify the states using the eigenvalues ~m of the angular momentum,
lz. The eigenfunctions have the form

ψnm(ρ, ϕ) =
Nnm

a
|m|+1
H

ρ|m|eimϕ exp

(
− ρ2

4a2
H

)
L|m|n

(
ρ2

2a2
H

)
. (14.6)

Here n is non-negative integer, m is integer, L
|m|
n are Laguerre polynomials, while Nnm =√

n!/2π2|m|(|m|+ n) are normalization factors. The energy eigenvalues are

Enm = ~ωc[n+ (|m| −m+ 1)/2] . (14.7)
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The lowest Landau level corresponds to n = 0, m > 0. The Coulomb energy for the lowest
state can be easily calculated as

EC = 〈0m|e2/εr|0m〉 =
e2

εaH

Γ(m+ 1/2)

m!
. (14.8)

At large m is decays as m−1/2.

Two electrons are described by the Hamiltonian

H0(1) +H0(2) +Hint .

It can be rewritten through the center-of-mass coordinate, R = (r1 + r2)/
√

2, and the
relative coordinate, r = (r1 − r2)/

√
2, as

H0(R) +H0(r) +Hint(r
√

2) .

As a result, the center-of-mass motion is separated, and we look for a solution in the form

Ψ(R, r) = φ(R)ψ(r) .

Now we are left with a single-particle problem for the relative motion.

Since the interaction energy is radially-symmetric one can look for a solution in the
form

ψ(r) = R(r)e−imϕ

with odd m because of the Pauli principle [ψ(−r) = −ψ(r)]. The radial Schrödinger
equation is easily written in the dimensionless units as

− 1

2

d2R
dr2
− 1

r

dR
dr

+
1

2

(
m2

r2
+m+

r2

4
− α

r

)
R = ER , (14.9)

where r is measures in units of aH , E is measured in the units of ~ωc, while dimensionless
interaction constant is α =

√
2e2/εaH~ωc. At large magnetic field this equation can be

solved perturbatively with respect to α. In the lowest approximation we obtain:

E
(1)
0m =

~ωc
2

+
e2

εaH

Γ(m+ 1/2)

m!
. (14.10)

The energy of the center-of-mass motion must be added.

We find that the interaction destroys the degeneracy of the lowest Landau level. At
large m the correction decreases because the electrons are less sensitive to interaction at
long distances.
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Three electrons. For 3 electrons we can also strip the center-of-mass motion. It can be
done by the transform ρ = Or where

O =

 1/
√

2 −1/
√

2 0

1/
√

6 1/
√

6 −2/
√

6

1/
√

3 1/
√

3 1/
√

3

 .

After the transform the interaction Hamiltonian can be written as

Hint =
e2

ε
√

2

(
1

ρ1

+
2

|ρ1 +
√

3ρ2|
+

2

|
√

3ρ2 − ρ1|

)
. (14.11)

Again, we can write the eigen function as a product

Ψ(ρ1,ρ2,ρ3) = φ(ρ3)ψ(ρ1,ρ2)

and in this way to reduce the problem to a two-particle one.

An important point is that the probability density must be invariant under rotation
about multiples of π/3. The resulting Hamiltonian also commutes with the total angular
momentum, L. Then the states can be classified according to eigenvalues M of the orbital
momentum. It was shown by R. Laughlin that a proper complete set to diagonalize a
3-electron system can be written as

|m,m′〉 =
F

2

[
(z2 + iz1)3m − (z2 − iz1)3m

]
(z2

1 + z2
2)m

′
e−(|z1|2+|z2|2) . (14.12)

Here zi = ξi + ηi, ξ, eta are the Cartesian components of the vector ρi/aH , F is a normal-
ization factor. The states (14.12) are the eigenstates of the total angular momentum with
M = 3(m+m′).

To diagonalize the system one has to solve the secular equation

det |eδmmδm′m′ − 〈mm′|Hint|mm′〉| = 0 .

The crucial point is that the basis (14.12) is an extremely good starting approximation
since off-diagonal elements of Hint are typically at least 10 times less than the diagonal
ones.

The minimum angular momentum for which a non-degenerate solution exists is M =
3 (m = 0, m′ = 1). The next solution corresponds to M = 9, it is combined from the
states (3,0) and (1,3). These states have the lowest energy at Hint = 0. The “charge
density” for the state with M = 9 is 1/3 comparing to the state with M = 3. Since the
angular momentum is conserved and the angular momentum corresponds to the area of an
electronic state, the 3 electrons are “incompressible”.
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Fractional quantum Hall states

It is impossible to diagonalize exactly the system of many electron states. An extremely
effective approximate guess was suggested by R. Laughlin which we shall discuss for the
case of very large magnetic field when only the lowest Landau level is important. The
single-electron states for that case can be written as

〈r|0m〉 =
Nm

aH
zme−|z|

2/4 ,

where z = x + iy. The complete set of N -electron states with total angular momentum
M =

∑N
ν=1mν are the Slater determinants

Ψ(1 . . . N) =
∑

P (ν1...νN )

(−1)P
N∏
µ=1

Nmµz
mµ
νµ exp

(
−1

4

N∑
α=1

|zα|2
)
.

Since the ground state in the independent band approximation is a combination of Slater
determinants, its general form is

Ψ(1 . . . N) =
∏
j<k

f(zj − zk) exp

(
−1

4

N∑
α=1

|zα|2
)
.

There are several requirements to the functions f(z):

• The function f(z) must be a polynomial of z;

• Since Ψ should be a Fermion state, f(−z) = −f(z);

• Ψ can be chosen as an eigenfunction of the total angular momentum. Therefore, the
function f(z) has to be homogeneous.

The simplest choice is
f(z) = zm , (n odd) .

Thus the approximate wave function has the form

Ψ(1 . . . N) =
∏
j<k

(zj − zk)m exp

(
−1

4

N∑
α=1

|zα|2
)
. (14.13)

The Laughlin state (14.13) describes a liquid-like system. The two-particle correlation
function

g
(m)
2 (zz, z2) =

∫ N∏
ν=3

drν |Ψ(1 . . . N)|2

at small distances is proportional to |z1 − z2|m that reflects the Pauli principle for the
electrons. The smallest possible value of m is 3. The total angular momentum is just
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M = Nm, while the area covered by the electrons is A = N(2πma2
H). Thus the average

electron density is (2πma2
H)−1, and the filling factor is ν = 1/m. To keep electrostatic

stability one has to add the positive background.
The estimate for the Coulomb energy for the Laughlin state can me obtained as

E
(m)
C =

N(N − 1)

2A

e2

ε

∫
d2r

r

[
g

(m)
2 (r)− 1

]
.

Because the correlation function decay strongly at small distances the incompressible liquid
state appears more stable than the Wigner crystal. An interesting fact is that the Laughlin
state appears the exact ground state for ν = 1/m in the case of contact interaction,
Hint(r) ∝ δ(r).

As a consequence of the electron-hole symmetry it is easy to find the state corresponding
to the filling factor (1− ν) if the state for ν is known.

Elementary excitations

Elementary excitation are important both for transport and dynamics. Changing of energy
of the electron system can be achieved by its compression, or, equivalently, by changing of
angular momentum while keeping the neutralizing background.

In other words, it means that new quasielectrons of quasiholes are introduced into the
state Ψν if ν 6= 1/m. An introduction of a quasihole can be represented as

Ψ+
ν = A+(z0)Ψν(z1 . . . zn) , A+(z0) =

N∏
j=1

(zj − z0) .

Let us estimate the effective charge of this excitation. The average area per particle which
is covered in the state with filling factor ν = 1/m is (N − 1)(2πma2

H). It can be seen by
direct calculation of the integral. The corresponding charge density is

ρ0 =
−Ne

(N − 1)(2πma2
H)
≈ − e

2πma2
H

.

Thus, each electron occupies the area with m flux quanta. Its charge must be compensated
by a positive background.

In the state Ψ+
ν the maximum angular momentum per particle is increased by 2πa2

H .
This corresponds to the change in the charge density which is equivalent to the positive
charge +e/m.

Quasielectrons can be created in a similar way,

Ψ−ν = A−(z0)Ψν(z1 . . . zn) , A+(z0) =
N∏
j=1

(
∂

∂zj
− z∗0

)
.

Here the partial derivative acts only on the polynomial part of the wave function Ψν leaving
alone the Gaussian part. It can be shown that the effective charge of the quasielectron is
−e/m.
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The gaps between the ground and excited states were observed directly from tempera-
ture dependences of conductance. It appears that the quasiparticles can be considered as
particle with so-called fractional statistics – anyons. Very interesting collective excitations
were also predicted and observed experimentally by inelastic light scattering. H. Störmer,
D. Tsui and R. Laughlin were awarded by the Nobel Prize 1998 for their discovery of
FQHE.

However, the story is not over. Very specific features of Hall conductance were observed
at ν = p/q where p, q are integers, both for odd and even denominator q. These features
were not explained by original theory by Laughlin. It appears, that at odd denominators
the electrons also condense in some quantum liquids. However, the properties of that
liquids differ significantly from those of the incompressible Laughlin liquid.

The above discussion is definitely not an “explanation” of FQHE. It just demonstrates
some basic trends in the field. More work has to be done to understand the whole physical
picture and to construct a proper transport theory.
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Chapter 15

Fundamental Properties of
Superconductors

15.1 General properties.

We review here the most important properties of superconductors which are definitely well
known. They are

• Zero resistance (Kammerlingh-Onnes, 1911) at T < Tc. The temperature Tc is called
the critical one.

• Superconductivity can be destroyed also by an external magnetic field Hc which is
also called the critical one (Kammerlingh-Onnes, 1914). Empirically,

Hc(T ) = Hc(0)
[
1− (T/Tc)

2
]
.

• If the superconductivity is destroyed by a current the critical current is just the one
which produces the field Hc at the surface (the Silsby rule). (This rule is not valid
for thin samples, see below).

• The Meissner-Ochsenfeld effect (1933). Magnetic field does not penetrate the sample,
the magnetic induction being zero, B = 0 (see Fig. 15.1). In many important cases
this effect can be not complete. We will come back to the problem later.

• To be more exact, the field does exist inside a surface region with the thickness
δ ∼ 10−5− 10−6 cm where persistent screening currents flow. Empirical temperature
dependence of the penetration depth is

δ(T ) = δ(0)
1√

1− (T/Tc)4

so δ →∞ at T → Tc.
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Figure 15.1: The Meissner effect.

• The phase transition to the superconducting (SC) state in the absence of magnetic
field is the type II one. So, there in no hidden heat. Rather, there is a discontinuity
of the specific heat. Contrary, if H 6= 0 (i.e. at T < Tc) the transition is the type I
one.

• The penetration depth continuously changes from the finite value to infinity at Tc. It
means that the properties of electron system change also continuously. At the same
time, resistivity changes abruptly. One could imagine that electrons do not interact
with the lattice in the SC state. In this case one would expect great increase of the
thermal conductivity. Nevertheless, it is continuous at the transition point.

• The last property which is very important is that electron contribution to the specific
heat behaves at low temperatures as exp(−∆/kBT ) that means that there is a gap in
the elementary excitation spectrum. But this gap is strongly temperature dependent
contrary to semiconductors. Indeed, it should vanish at the transition point.

• There are other arguments in favor of the gap in the excitation spectrum, namely,
electromagnetic and sound absorption which has the threshold ~ω = 2∆ (because a
pair of excitations is created by a quantum), tunnel effect and so on.

As a result, one comes to the conclusion that it is a new type of condensed state.

The London Equation

In the following, it is convenient to use the local magnetic field h(r), the induction being
the spatial average of the local magnetic field, B = h̄. One can write the free energy as

F =

∫
Fs dV + Ekin + Emag

where Fs is the free energy on the condensed system, while Ekin is connected with persistent
currents. If we denote

js = −nsev(r)
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with the density of superconducting electrons, ns,
1

Ekin =
1

2

∫
nsmv

2 dV .

The energy of the magnetic field is

Emag =

∫
h2

8π
dV .

Then,

curl h =
4π

c
js. (15.1)

As a result,

F = F0 +
1

8π

∫ (
h2 + δ2

L |curl h|2
)
dV

with

F0 =

∫
Fs dV , δL =

√
mc2

4πnse2
. (15.2)

At low temperature it is natural to assume that ns = ne. Then, for order-of-magnitude
estimates we get for δL ∼ 500 Å for simple metals like Al and Sn (m ∼ m0) and ∼ 2000 Å
for transition metals with large m.

Now we get the equation for h that provides the minimal free energy. We get

δF =
1

4π

∫
(h · δh+δ2

L curl h · curl δh) dV =
1

4π

∫
(h + δ2

L curl curl h) · δh dV

(the second expression is obtained by the interacting by parts, check!). As a result, for the
minimum we get the London equation

h + δ2
L curl curl h = 0. (15.3)

which should be analyzed together with the Maxwell equation (15.1).

The Meissner effect

For the simplest geometry, Fig. 15.2, the surface is the (x, y) plane, field and current
depend only on z. We have

h + δ2
L curl curl h = 0,

curl h = (4π/c) js,

div h = 0.

1We assume that the velocity is a slow-varying function of co-ordinates.
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Figure 15.2: The Meissner effect. Penetration depth.

1. If h ‖ z, we obtain ∂h/∂z = 0, h = const. Consequently, curl h = 0, js = 0. From
the London equation, h = 0. The field cannot be normal to the superconductor
surface.

2. If h ‖ x the equation div h = 0 is automatically met, and we get j ‖ y. So, the
Maxwell equation is

dh

dz
=

4π

c
js

and the London one
djs
dz

=
nse

2

mc
h =

h

δ2
L

c

4π
.

The solution is
h(z) = h(0) e−z/δL .

Thus, we have proved the concept of the penetration depth. p



Chapter 16

Magnetic Properties of Type I
Superconductors

16.1 Thermodynamics in a Magnetic Field.

Consider a long cylinder with length L and a coil with N shown in Fig. 16.1.

Figure 16.1: Magnetic properties of a long cylinder.

1. In a normal state, the field is homogeneous

h =
4πNI

cL
,

Fn = πr2
0LFn + πr2

1L
h2

8π
.

2. In a SC state

Fs = πr2
0LFs + π(r2

1 − r2
0)L

h2

8π
.

313
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Here we have neglected surface effects – penetration of the field inside the sample and
kinetic energy of surface currents (r0 � δ).

Let us find the difference Fn − Fs. At the transition the magnetic flux Φ decreases. As
a result, the voltage V is induced, the work being∫

V I dt = −
∫ s

n

(
N

c

dΦ

dt

)
I dt.

If we keep the current constant∫
V I dt =

NI

c
(Φn − Φs) =

NI

c
πr2

0h = πr2
0L
h2

4π
.

In the equilibrium, at h = Hc,

Fn −Fs =

∫
V I dt = πr2

0L
H2
c

8π
.

As a result,

Fn − Fs =
H2
c

4π
.

Now we can derive several important relations.
1. Let us fix the current I and change the temperature. The entropy

Sn = −dFn
dT

, Ss = −dFs
dT
→

Sn − Ss = − 1

4π
Hc
dHc

dT
the hidden heat being

L = T (Sn − Ss) = − T

4π
Hc
dHc

dT
> 0.

It is known that at T → Tc Hc → 0 while dHc/dT remains finite. We have proved that
at H = 0 L = 0 (type II transition). The specific heat step is

Cn − Cs =

[
T
d

dT
(Sn − Ss)

]
Tc

= − 1

4π

[
T

(
dHc

dT

)2
]
Tc

.

This relation is confirmed by experiments.

16.2 Penetration Depth

Relation Between the Current and the Field

It is very convenient to use the vector potential according to the relation

h = curl A.
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To make this equation definite one should chose the gauge and the boundary conditions.
Usually the gauge

div A =0, [An = 0]surface

is chosen. In such a gauge the current response is

js = −nse
2

mc
A (16.1)

with
div j =0, [jn = 0]surface .

The first condition is just the continuity equation while the second is met in the absence
of the currents flowing into the sample.

Eq. (16.1) is valid if both the current and field slowly vary in space. As the same time,
if there is a gap ∆ in the excitations spectrum the electrons in the layer

εF −∆ < p2/2m < εF + ∆

are correlated. The width of the layer in the p-space is

δp ∼ 2∆/vF .

According to the uncertainty principle, it means that the spatial size of the package is

ζ0 =
~vF
π∆

(the factor 1/π is introduced for convenience). The quantity ζ0 is called the coherence
length.

We see that the London equation is valid at

δL � ζ0.

The materials with δL � ζ0 are called the type II superconductors. In this section we are
interested in the opposite limiting case, δL � ζ0, for type I materials.

To get the relation between the current and the vector-potential usually the Pippard’s
phenomelogical expression is used

j(r) = C

∫ (
A(r′) ·R

)
R

R4
e−R/ζ0 dV ′, R = r− r′ . (16.2)

To get C we apply this expression to the case of slow-varying vector potential. In this case
the potential can be considered as constant, and we should come to the London expression.
As a result (see Problem 16.1)

C = − 3nse
2

4πmcζ0

. (16.3)

The exact result can be obtained from the microscopic theory and it is much more com-
plicated. Nevertheless, the Eq. (16.2) is a very good approximation and we will use it
extensively.
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Penetration depth.

The integration in Eq. (16.2) is performed over the whole sample. Near the surface it is
obviously incorrect. One can use the following rule. Let us keep Eq. (16.2) but perform the
integration only over the points r′ which are accessible from the point r along the straight
line (see Fig. 16.2).

Figure 16.2: On the shadow effect.

The exact theory is very complicated for this case, and we will apply the model con-
siderations (Pippard).

Let us return to our geometry, Fig. 15.2. Let the vectors A, j are parallel to z. If the
vector-potential would be constant near the surface one would obtain

j = −nse
2

mc
A.

In reality, A is not very small only in the layer with the thickness δ � ζ0. Consequently,
one should multiply this expression by δ/ζ0 to get

j = −nse
2

mc

δ

ζ0

A.

Substituting this relation to the Maxwell equation (15.1) we get

h(z) = h(0) e−z/δ

with the following self-consistent equation for δ

δ−2 =
4πnse

2

mc2

δ

ζ0

→ δ3 = δ2
Lζ0.

The exact theory leads to the extra factor 0.62 it this equation:

δ3 = 0.62 δ2
Lζ0. (16.4)
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Metal δL, Å ζ0, Å δth, Å δexp, Å
Al 157 16000 530 490-515
Sn 355 2300 560 510
Pb 370 830 480 390

Table 16.1: Values of δ and ζ0 for 3 metals.

As a result
δ

δL
∼
(
ζ0

δL

)1/3

� 1, while
δ

ζ0

∼
(
δL
ζ0

)2/3

� 1.

There are several conventional ways to measure the penetration depth: by magnetic
susceptibility of small SC particles, or thin films. Another way is measuring the inductance
of a coil near the SC surface, or the inductance of a coil with long SC cylinder as a kernel
(the Kazimir method). The best way is study a cavity with SC walls.

Filed Penetration into Clean Metals and Alloys.

Clean Metals

Now we briefly discuss the experimental picture. It interesting to check the relation (16.4).
For clean metals one can obtain the ratio ne/m and vF from the specific heat data and
calculate δL, while ∆(0) can be obtained from the similar measurements in the SC state,
so we can determine ζ0. The comparison is given in the table 16.1.

Alloys

The idea to take impurities into account in the simplest way belongs also to Pippard. It is
just to introduce the facto exp(−|r− r′|/`) in the integrand of Eq. (16.2) to get

j(r) = C

∫ (
A(r′) ·R

)
R

R4
exp

[
−R

(
1

ζ0

+
1

`

)]
dV ′, R = r− r′. (16.5)

This way was successful to explain many experimental results, in particular, on the alloys
SnIn, Fig. 16.3. We see that the penetration depth increases with the increase of the impu-
rity concentration. Thus, Impure materials are type II superconductors.
At δ � ` one can integrate over R considering A(r′) as constant. The result is

j(r) = C
4π

3

1

ζ−1
0 + `−1

A(r).

We returned to the London equation

j(r) = −nse
2

mc

`

ζ0

A(r)
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Figure 16.3: The dependence δ vs ` in SnIn alloys.

which leads to the penetration depth

δ = δL

√
ζ0

`
at `� δ, ζ0. (16.6)

Temperature Dependence of the Penetration Depth

As a prescription, the Pippards relations (16.2) and (16.5) remain valid at finite temper-
atures. One can retain the quantity ζ0 obtained for zero temperature while the factor C
becomes temperature-dependent. Near Tc

C ∝ Tc − T .

We will discuss this complete dependence after considering microscopic theory. People
often use the empirical relation given above which works relatively well.

16.3 Magnetic Properties of Samples with an Arbi-

trary Shape

Nature of the Intermediate State.

To discuss the penetration depth we have always used the long cylinder configuration which
provides constant magnetic field at the surface. To understand what happens for a sample
with an arbitrary shape let us consider a SC sphere with the radius a embedded in the
external magnetic field H0, Fig. 16.4. If the field is very low, we have the Meissner effect
and h =0 inside the sphere. To get the field outside one should write the Maxwell equation

div h = curl h = 0, h→ H0 at r →∞.

Another boundary condition is
(hn)r=a = 0
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Figure 16.4: Field distribution near a SC sphere with the radius a.

(the field cannot be normal to a SC). As a result, we get the solution for the region outside
the sphere

h = H0 +H0
a3

2
∇
(

cos θ

r2

)
that is just the field of a magnetic dipole. At the surface, the tangential field component
is

(hθ)r=a =
3

2
H0 sin θ.

Thus, at the equator (θ = π/2) hθ = (3/2)H0 and at H0 = (2/3)Hc the maximal field is
just Hc. What happens at

2

3
Hc < H0 < Hc? (16.7)

In this region the normal and SC phases co-exist. This state is called the intermediate
one. It is clear that condition (16.7) is shape dependent. For example, in a very thin plate
intermediate state exists at any field H < Hc.

To study the system in more detail, let us consider the plate in a perpendicular magnetic
field, Fig.(16.5). We see the set in N and S layers, the field at the interface being Hc. In
the N -regions h ‖ z, i.e. div h = curl h = 0. As a result, h = const. In S-layers h = 0.

To keep the flux constant we should fix the fraction of SC volume to be

ρ =
ds

dn + ds
.

Indeed, far away the field is homogeneous, h = H0, and the flux is AH0 where A is the
film’s area. Inside the film the total flux penetrated only the normal regions, the area
being A(1− ρ) while the field is equal to Hc. As a result,

AH0 = A(1− ρ)Hc → ρ = 1− H0

Hc

.
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Figure 16.5: Field distribution in a plate embedded in a transverse field.

We cannot determine the thickness dn,s from geometry consideration and need to discuss
thermodynamics.

Important Thermodynamics Relations

Now we introduce the most important concepts of thermodynamics to use them in the
following chapters.

Free energy

Consider a system consisting of the sample and external objects (coils, generators, etc.).
The energy of the electrons can be written as (we put the electron charge −e)

U =
∑
i

[
1

2m

(
pi +

e

c
A
)2

+ Vi

]
+
∑
i 6=j

Vij.

To get the free energy one should add the entropy contribution−TS. Thus

U − TS ≡
∫

sample

Fs dV .

Adding the magnetic energy
∫

(h2/8π) dV we get

F =

∫
sample

Fs dV+

∫
all space

(h2/8π) dV . (16.8)
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Magnetic induction

In many cases, we will face the problems when the field changes at the scale ∆x which
is small in comparison with the sample’s size. In those case it is convenient to introduce
magnetic induction B(r) as the average field at the distances � ∆x, but much less than
the sample’s size. According to this definition

B = h̄ inside the sample

B = h outside .

From the local Maxwell equations we get

curl B =
4π

c
j̄, div B = 0. (16.9)

Magnetic field strength

Assume that the field h(r) has changed because of the variation of the currents in the coils.
As a result, the induction B should also change. Expanding the free energy in powers of
δB(r) we get

δF =
1

4π

∫
H(r) δB(r) dV (16.10)

where we have introduced the factor (1/4π) just for convenience. The function H(r) defined
in such a way is called the magnetic field. Outside the sample

h δh

4π
=

H δB

4π
, h = B.

Consequently, outside the sample the thermodynamic field H is the same as the microscopic
field.

The definition (16.10) is rather formal. To understand its physical meaning we consider
the situation when no external currents flow into the sample. In this case

j̄ = j̄s + je

where je is the current density in the external coils, etc. We have

curl H =
4π

c
je. (16.11)

To prove this expression let us assume that the induction B(r) has the variation δB(r) for
the time δt. As a results, the electric field E appears in the external circuit according to
the Maxwell equation

curl E = −1

c

δB

δt
.
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This electric field leads to the work δt
∫

jeE dV upon the external currents, while the work
produced by these currents is

δW = −δt
∫

jeE dV . (16.12)

On the other hand, it is known from the thermodynamics that for reversible processes this
work should be equal to the variation of the free energy, δW = δF . Now we return to the
definition (16.10)

δF = δt
1

4π

∫
H
δB

δt
dV = −δt c

4π

∫
H curl E dV

= −δt c
4π

∫
E curl H dV − δt c

4π

∫
[E×H] ds

where the last integral is calculated over the surface of the whole system and it is equal to
the emitted energy. Neglecting the last term and comparing the result with Eq. (16.12)
we prove Eq. (16.11).

Thermodynamic potential at fixed T and je

If both the temperature and field are changed

δF =
1

4π

∫
H δB dV − S δT.

To get the equilibrium at fixed T and B one should minimize F .
Usually, experimentally both the external currents and the temperature are kept fixed.

To take it into account it is convenient to construct a special thermodynamic potential

G = F − 1

4π

∫
B ·H dV .

Consequently,

δG = − 1

4π

∫
B · δH dV − S δT. (16.13)

Because div B =0 one can put B = curl Ā where Ā is the “macroscopic” vector-potential.
Then, after the integration by parts,

S δT + δG = − 1

4π

∫
curl Ā · δH dV =

1

4π

∫
Ā · curl δH dV =

1

c

∫
Ā · δje dV .

This is just the potential which should be minimized at fixed T and je.
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Magnetization Curve in the Intermediate State

To get the magnetization curve B(H) let us calculate the G-potential for the sample. If
the magnetic field in a normal state if hn

B = (1− ρ)hn + ρ · 0 = (1− ρ)hn.

The free energy density is

F = Fn−
ρH2

c

8π︸ ︷︷ ︸+(1− ρ)h
2
n

8π
.

condensation energy

Here we dropped the interface energy at S −N -boundaries, as well as the field distortion
near the surface. Introducing B we get

F = Fn −
ρH2

c

8π
+

B2

8π(1− ρ)
.

Now

G(B, ρ)= F − BH

4π
= Fn −

ρH2
c

8π
+

B2

8π(1− ρ)
− BH

4π
.

1. Minimization with respect to ρ :

|B| = Hc(1− ρ)→ hn = Hc.

2. Minimization with respect to B :

B = H(1− ρ).

That means: i) B ‖ H, ii) the quantity H is constant over the sample and equal to Hc.
These relation are equivalent to the conventional relation B =µH for a paramagnet. The
only (but very important) difference is that in SC it is non-linear.

The distribution of magnetic field can be obtained from the set of equations

div B = 0,

curl H = 0,

H =
B

B
Hc

and usual boundary condition of continuity of Bn and Ht (normal component of induction
and tangential component of the field.
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Applications.

1. Force lines are the straight ones.

Proof. We have H2 = H2
c , so

0 = ∇H2 = 2(H · ∇)H+2
[
H× curl H︸ ︷︷ ︸] .

0

Consequently, (H · ∇)H =0 - vector H does not change along the force line and it is the
straight one.

2. Field distribution in a sphere.

We chose z-axis along B and H, which are constant. We know that inside H = Hc. Let us
denote B as B0. Outside the sample

H = B = H0 −H1
a3

2
∇
(

cos θ

r2

)
where H1 is a constant. Then we apply boundary conditions:

Continuity of Ht →
(
H0 + H1

2

)
sin θ = Hc sin θ,

Continuity of Bn → (H0 −H1) cos θ = B0 cos θ.

As a result,
B0 = 3H0 − 2Hc,
H1 = 2(H −Hc).

We come to the conclusion the fraction of SC regions in a sphere is

ρ = 1− B0

Hc

= 1− 3H0 − 2Hc

Hc

= 3
Hc −H0

Hc

,
2

3
Hc < H0 < Hc.

The field at the equator and at the poles of a sphere is shown in Fig. 16.6.

3. Critical current of a SC wire.

Consider a wire with the radius a, Fig. 16.7 carrying the current I. The field at the surface
is H(a) = 2I/ca. If H(a) < Hc all the wire is in a SC state. So, the critical current is

Ic =
ca

2
Hc.

At I > Ic the surface is to become normal. On the other hand, in this case the current
would be uniform that leads to the condition H < Hc near the central part. Thus, we
conclude that the external part (at R < r < a) should be normal while the internal part
(0 < r < R) should be in an intermediate state.
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Figure 16.6: Field distribution at the equator (1) and poles (2) of a SC sphere.

Figure 16.7: Field distribution in a wire.

At the boundary, at r = R, one has H(R) = Hc and we get the condition for the
current inside the tube r < R

H(R) = Hc =
2I1

cR
→ I1 =

cRHc

2
= Ic

R

a
< Ic < I.

We come to the conclusion that the current I−I1 should flow through the normal external
part. As a result, this current should produce a constant electric field E (remember: curl
E = 0). So, the central part cannot be completely SC. The picture of the intermediate
state in a wire is shown in Fig. 16.7.

Microscopic Structure of the Intermediate State.

Let us discuss the structure of the intermediate state in more detail. Consider a plate
shown in Fig. 16.8 and placed in a perpendicular magnetic field H0. Let us assume that
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Figure 16.8: Microscopic domain structure.

the normal and SC regions form a layered structure. Our aim is to determine the widths
dn,s of the layers.

The way is to minimize the free energy with respect to dn,s at given H0. That means
the fixed flux through the plate and one has to use G-potential. If the interfaces are flat
and the surface energy is neglected

F = −H
2
c

8π
LxLye

ds
d︸ ︷︷ ︸+

H2
0

8π
LxLye

d

dn︸ ︷︷ ︸, d = dn + ds

condens. magn. energy for h = H0(d/dn)

Now we come to the next approximation. We have to take into account

1. Creation of the N − S interfaces. We allow for the interfaces introducing a specific
surface energy

γ =
H2
c

8π
λ, λ ∼ 103 − 104 Å.

The corresponding contribution to F is

γeLy × (number of interfaces) =
H2
c

8π
λeLy

2Lx
d
.

2. Deformation of the force lines near the surface. As shown in Fig. 16.9, SC domains
become thinner near the surface. The energy ”loss” is of the order ∼ d2

sLy for each
interface. The total loss is

H2
c

8π
d2
sLy

Lx
d
U0

(
ds
d

)
where U0 is the dimensionless function which depends on the shape of the regions.

3. Magnetic energy is also changed near the surface which we take into account by
another dimensionless function V0

H2
0

8π
d2
sLy

Lx
d
V0

(
ds
d

)
.
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Figure 16.9: Domain structure near the surface.

Let us consider the quantities ρs and d as independent variables. As we have seen
earlier, for a macroscopic material

1− ρs =
H0

Hc

.

We fix the SC density ρs according to this expression and get

F = Fmacro +
H2
c

8π
eLxLy

{
2λ

d
+
[
ρ2
sU0 + ρ2

s(1− ρ2
s)V0

] d
e

}
.

Minimizing with respect to d we get

d =

√
λe

ϕ(ρs)
, ϕ(ρs) =

1

2

[
ρ2
sU0 + ρ2

s(1− ρ2
s)V0

]
.

The typical estimates are: for H0/Hc ∼ 0.7, ϕ = 10−2, we get d ∼
√
λe. Taking e ∼ 1

cm, λ ∼ 3000 Å, we obtain d ≈ 0.06 cm.
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There are several methods to observe the domain structure.

1. Change of the resistance of a thin wire while motion along the sample’s surface
(Meshkovskii, Shal’nikov, 1947).

2. Decoration by ferromagnetic powder.

3. Optical methods (using Faraday rotation).

We have discussed a simplified picture. The surface domain structure is much more
complicated because of the surface winding (see the lower panel of Fig. 16.9).

16.4 The Nature of the Surface Energy.

In the end of the chapter we discuss qualitatively the nature of the interface contribution
to the energy.

Consider two limiting cases.

1. ζ0 � δ. In our previous macroscopic treatment we have assumed the sharp N − S
boundary. In the N -region the thermodynamic potential G decreases due to mag-
netic contribution (H2

c /8π) − (H2
c /4π) while in the S-region it decreases according

to the condensation energy as −(H2
c /8π). What is the difference if we come to the

microscopics? The new feature is that the superconductivity becomes ”spoiled” at
the distance ∼ ζ0 that leads to the loss of the condensation energy. Consequently,
λ ∼ ζ0 and γ ∼ (H2

c /8π)ζ0.

2. ζ0 � δ. The contribution discussed above is very small and we return to the Lonfon
equation for the field. We have h = Hc in the N - region while h = Hs exp(−x/δ) in
the S-region. The G-potential has the form

G =

∫
x>0

dV

[
Fn −

H2
c

8π
+
h2

8π
− Hh

8π
+
δ2

8π

(
dh

dx

)2
]

The specification of the items is

1→ free energy of normal phaseat H = 0,
2→ condensation energy of the S−region,
3→ energy of magneticfield,
4→ microscopic analog of the quantity − (BH/4π),
5→ kinetic energy of the currents.

We write the previous expression as

G =

∫
dV
(
Fn −

H2
c

8π

)
+ γA
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extracting the surface contribution. As a result,

γ =
1

8π

∫ ∞
0

dx

[
h2 + δ2

(
dh

dx

)2

− 2hHc

]
= −H

2
c

8π
δ.

We see that surface energy is negative. So the system ”wants” to make as many
surfaces as possible. It is not surprising that superconductors with ζ0 � δ have
specific magnetic properties. They are called the type II superconductors and we
will discuss these materials in the next chapter.

16.5 Problems

16.1. Derive Eq. (16.3).
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Chapter 17

Magnetic Properties of Type II
Superconductors

17.1 Magnetization Curve for a Long Cylinder

Type II superconductors have the following general properties

1. The Meissner effect in a long cylinder is complete only in very weak fields, H < Hc1.
The lower critical field Hc1 is much less than the thermodynamic field Hc defined as

Fn − Fs =
H2
c

8π
.

2. At H > Hc1 magnetic field lines penetrate the cylinder. Nevertheless, even in the
equilibrium state the penetration is not complete. The flux Φ is less than in the
normal state. It means that persistent currents still exist. Such a situation holds at
Hc1 < H < Hc2 where Hc2 is the so-called upper critical field which is much greater
than Hc.

3. At H > Hc2 a macroscopic sample does not repel the flux, and B ≡ H. At the same
time, at Hc2 < H < Hc3 a surface SC layer still exists, the thickness being ∼ 103 Å.
Usually, Hc3 = 1.69Hc2. One can observe the layer measuring surface conductivity.
The physical reason is similar to the bubbles creation at the wall of the glass with
beer (see later).

The values of critical fields for V3Ga at T = 0 are: Hc1 = 200 G, Hc = 6 000 G, Hc2 =
300 000 G.

The temperature dependencies of the critical fields are shown in Fig. 17.1. Now we will
concentrate on the region Hc1 < H < Hc2 with partial field penetration. Such a region has
been discovered by Shubnikov (1937) and is called the Shubnikov phase. Another names
for this region are the vortex state (see below), and the mixed state (do not mix with the
intermediate state for type I SC). The magnetization curve B(H) is shown in Fig. 17.2.
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Figure 17.1: Phase diagram of a long cylinder of type II superconductor.

In some experimental works people prefer to plot magnetization

M =
M −H

4π

(see Fig. 17.3). It is interesting that the areas below the curves in Fig. 17.2 are the same
for type I and type II SC (Problem 17.1).

Now let us discuss the phase transition at H equal to the critical value Hc1 or Hc2. We
start with H = Hc2. According to experimental results,

1. The curve B(H) is continuous at H = Hc2.

2. There is no hidden heat while there is a discontinuity of the specific heat.

So we face the typical type II transition. Let us consider thermodynamics for this
transition. Let us consider two phases: the Shubnikov one i, and the ”normal” one, j, in
which most of the sample is in the normal state (B = H(. We have

Gi = Fi(T,B)− BiH

4π
,

the dependence B(H) is determined from the condition

∂

∂Bi

Fi(T,Bi) =
H

4π
, (17.1)

while the entropy is

Si = −
(
∂Gi

∂T

)
H

= −∂Fi
∂T

.
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Figure 17.2: B vs H curves for type I (dashed line) and type II (solid line) superconductors.

Let the SC and normal state are in equilibrium at some field H∗ (in our case H∗ = Hc2)
that means

Gi = Gj.

If there is no hidden heat the entropies should be also equal,

Si = Sj.

That leads to the continuity of the curve B(H) along the equilibrium line H = H∗(T ).
Indeed, we have at the line

dFi
dT

=
∂Fi
∂T

+
∂Fi
∂Bi

dBi

dT

Using the magnetization curve (17.1) we obtain [dH = (dH∗/dT )dT ]

dGi

dT
= −Si −

Bi

4π

dH∗

dT
.

Then, along the equilibrium curve (Gi = Gj) we have

dGi/dT = dGj/dT , Si = Sj.

Thus Bi = Bj.
Now we can calculate the specific heat at given magnetic field as

Ci = T

(
∂Si
∂T

)
H

.
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Figure 17.3: Magnetization curves for type I (dashed line) and type II (solid line) super-
conductors.

As earlier, we express
dSi
dT

=

(
∂Si
∂T

)
H

+

(
∂Si
∂H

)
T

dH∗

dT
.

We should remember that along the magnetization curve

dSi
dT

=
dSj
dt

.

As a result, we get

Cj − Ci = T
dH∗

dT

[(
∂Si
∂H

)
T

−
(
∂Sj
∂H

)
T

]
.

The last part of the calculation is to express the derivative (∂Si/∂H)T through magnetic
characteristics. We have(

∂Si
∂H

)
T

=

(
∂Si
∂Bi

)
T

(
∂Bi

∂H

)
T

= − ∂2Fi
∂Bi∂T

(
∂Bi

∂H

)
T

= − 1

4π

∂H(Bi, T )

∂T

(
∂Bi

∂H

)
T

. (17.2)

Then
dH∗

dT
=

(
∂H

∂T

)
Bi

+

(
∂H

∂Bi

)
T

dB

dT
(17.3)

where
dB

dT
=
dBi

dT
=
dBj

dT
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is the induction derivative along the equilibrium line. Substituting (∂H/∂T )Bi from (17.3)
into (17.2) we get (

∂Si
∂H

)
T

= − 1

4π

dH∗

dT

(
∂Bi

∂H

)
T

+
1

4π

dB

dT

Cj − Ci =
T

4π

(
dH∗

dT

)2 [(
∂Bj

∂H

)
T

−
(
∂Bi

∂H

)
T

]
Consequently, if one knows both the dependenceH∗(T ) and magnetic susceptibility

(
∂Bj
∂H

)
T

for both phases he can predict the specific heat discontinuity. Looking at the curves in
Fig. 17.2 we see that Ci > Cj. This relation can be checked experimentally.

However one should keep in mind that it is rather difficult to reach true equilibrium
conditions in type II SC (see below).

Check of thermodynamic properties is very important to prove that you
observe the true bulk effects.

17.2 Microscopic Structure of the Mixed State

Physical Picture

The first important feature of type II SC is that the surface energy is negative (see Sec.
9.4). It is clear that in this case the system “wants” to form a fine mixture of normal and
SC regions, the surface contribution to the free energy being very important.

To get the physical picture we start with the case of a mixed state with small B
(H −Hc1 � Hc1). One can imagine 2 types of the structure: thin layers (with the width
∼ ζ), or filaments with the radius ∼ ζ. One can show that at δ. � ζ the latter is more
advantageous, and we discuss it in more detail.

Consider an isolated filament (see Fig. 17.4) which is called the Abrikosov vortex line
(Abrikosov, 1956). It has a core with a radius ζ in which the density ns of SC electrons
decays to zero in the center. The magnetic field is maximal in the center while at r > δ it
decays as a result of screening by circular currents.

As we will see later, the structure of the core is not important for many applications,
at least at δ. � ζ (the core’s characteristics usually enter under the sign of logarithm).
According to the results both of the experiment and the theory (we will discuss it in detail),
the magnetic flux through a hole in a massive SC in quantized:

Φ = kΦ0 , Φ0 =
ch

2e
= 2 · 10−7 G · cm2.

Thus, we can expect that the magnetic flux

Φ =

∫
h · dS

is equal to Φ0 (maximal mixing in the system). The condition Φ = Φ0 determines all the
structure of an isolated line at δ.� ζ.
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Figure 17.4: Structure of an isolated filament in a type II superconductor.

Properties of a isolated vortex line.

Because we are interested in the case δ.� ζ, let us neglect the core contribution to the free
energy. As was shown in Sec. 8.1.1, the contribution of an isolated line can be expressed
as

F =
1

8π

∫
r>ζ

[
h2 + δ2

L(curl h)2] dV . (17.4)

We are interested in the linear tension, i.e.in the value of F for a unit length. Outside the
core the field is determined by the London equation

h + δ2
L curl curl h = 0 , r > ζ .

The presence of the core we take into account as a boundary condition at r → ζ.
Because δ. � ζ we can express it introducing a δ-function source in the London equation
as

h + δ2
L curl curl h = z Φ0 δ2(r) (17.5)

where z is the unit vector directed along z-axis. To prove this assumption let us integrate
the Eq. (17.5) over the area of a circular contour with the center at the axis and the radius
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r. Using the Stokes theorem we get∫
h · dS + δ2

L

∮
curl h · dl = Φ0 .

The first integral in the l.h.s. is just the magnetic flux through the contour. Remembering
that

j =
c

4π
curl h

we see that for r. � δ it is possible to neglect the contour integral. Thus we prove that
the total flux is equal to Φ0.

Now we will find the structure of the filed. It is easy to calculate it for

ζ � r � δ .

Indeed, one can neglect the first integral in the l.h.s. of Eq. (17.5) and get

δ2
L 2πr| curl h| = Φ0 → | curl h| ≡ −∂h

∂r
=

Φ0

2πδ2
L

1

r
.

As a result,

h =
Φ0

2πδ2
L

(
ln
δL
r

+ const

)
, ζ � r � δ .

In principle, one can find exact solution of the London equation (17.5) together with
the condition div h = 0. It has the form

h =
Φ0

2πδ2
L

K0

(
r

δL

)
(17.6)

where K0 is the Bessel function. Comparing the exact solution (17.6) with the asymptotic
one we get: const =0. The large-distance asymptotics of the field, according to (17.6) is

h =
Φ0

2πδ2
L

√
πδL
2r

e−r/δL , r.� δ .

Now we can easily calculate the free energy. After integration of the second term in
the integrand of (17.4) we get

F =
δ2
L

8π

∫
[h× curl h] dS

where the integral is to be calculated over the surface of the core (the cylinder with the
radius ζ). We have

F =
δ2
L

8π
2πζ h(ζ)| curl h|r=ζ =

(
Φ0

4πδL

)2

ln
δL
ζ
. (17.7)
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Discussion of the last formula.

1. F is only logarithmically dependent on ζ.

2. F is proportional to Φ2
0. Consequently it is more profitable to create 2 vortices with

the flux Φ0 that one with the flux 2Φ0.

3. We can rewrite the formula for T = 0 using the expression for Φ0 and the relations
(see below)

ζ0 =
~vF
π∆(0)

,
H2
c

8π
=

1

2
g(εF )∆2(0) (17.8)

which follow from the BCS microscopic theory. We get

F =
π2

3

H2
c

8π
ζ2 ln

δL
ζ
.

Now we can compare this energy with the core contribution which is of the order

δFcore ∼
H2
c

8π
ζ2.

We prove that the core contribution appears small in comparison with the one due
to the supercurrent.

Isolated Vortex in a Slab

Now we discuss the properties of the isolated vortex in a thin slab (d� δ) (Pearl). Inside
we have the London equation

h +
4πδ2

L

c
curl j = z Φ0δ2(r).

It is convenient to come to the vector-potential A,

h = curl A , div A = 0 .

We have

A+
4πδ2

L

c
j = F (17.9)

where in the cylindric co-ordinates

Fr = Fz = 0 , Fθ =
Φ0

2πr
.

Now let us average Eq. (17.9) over z-co-ordinate. Because d� δ the quantities A and F
are almost z-independent. Denoting the total current as J = jd we get

J =
c

4π

1

δeff

(F−A) , δeff =
δ2
L

d
.
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To solve the problem we need the field distribution outside the slab. We can make calcu-
lations assuming that we have a plane with the current Jδ(z):

curl curl A =
4π

c
j =

1

δeff

(F−A) δ(z)→ ∇2A+
1

δeff

(F−A) δ(z) = 0. (17.10)

To get the last equation we used the London gauge (curl curl A = −∇2A).
To solve Eq. (17.10) we introduce Fourier components

Aqk =

∫
A(s,z) ei(qs+kz) dV , , Aq =

1

2π

∫
dk Aqk =

∫
A(s,z) δ(z)eiqs dV ,

Fq =

∫
F(s) δ(z) eiqs dV = i

Φ0

q2
[z× q] . (17.11)

where s is the in-plane co-ordinate. We come to the very simple equation

−(q2 + k2)Aqk +
1

δeff

Aq =
1

δeff

Fq.

We can find Aqk from this equation and then substitute it to the definition (17.11) of Aq.
The result is

Aq =
1

2π

∫
dk

1

q2 + k2

1

δeff

(Aq − Fq) =
1

2qδeff

(Aq − Fq).

Finally,

Aq =
1

1 + 2qδeff

Fq.

Now we know everything: the current

Jq =
c

4π

1

δeff

(Fq−Aq) =
c

4πδeff

2qδeff

1 + 2qδeff

Fq,

magnetic field:

hq = i [q×Aq] =
Φ0

1 + 2qδeff

z.

Small distances correspond to large q (qδeff .� 1). We have

hzq ≈
Φ0

2qδeff

→ hz ≈
Φ0

4πδeff

1

r
.

For large distances (qδeff � 1)

Jq ≈
c

4πδeff

2qδeffFq =
cΦ0

2π

i [z× q]

q
→ J(r) =

cΦ0

4π2r2
,

hz(r) = −4πδeff

c

1

r

d

dr
(Jr) ≈ 2

π

Φ0δeff

r3
.
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The free energy of the vortex is

F =

(
Φ0

4π

)2
1

δeff

ln
δeff

ζ
.

It is important that the vortices in a slab have long range interaction. Indeed

F12 =
Φ0

c
[z× J(R12)] ∝ R−2

12 ,

the interaction (repulsion) energy decays only as R−1
12 .

Interaction between Abrikosov Vortices.

Now we return to the bulk material and consider interaction of 2 vortex lines parallel to
z-axis. We have

h+δ2
Lcurl curl h = z Φ0 [δ2(r− r1)+δ2(r− r2)] .

Its solution is a superposition of the two fields

h(r) = h1(r) + h2(r) , hi(r) = z
Φ0

2πδ2
L

K0

(
|r− ri|
δL

)
.

As usual, the free energy is

F =
δ2
L

8π

∫
[h× curl h] dS

where one should integrate over the both cores’ surfaces. As a result, the energy is

E =
δ2
L

8π

∫
[(h1+h2)× (curl h1 + curl h2)] (dS1 + dS2).

One can separate the 23 = 8 items into 3 groups.

1. Sum of the free energies of separate lines

2F =
δ2
L

8π

[∫
[h1 × curl h1] dS1 +

∫
[h2 × curl h2] dS2

]
,

2. Item ∫
(h1+h2) · ([curl h1 × dS2] + [curl h2 × dS1])

which is small at ζ � δL (currents and fields remain finite at the axis of the opposite
vortex),
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3. The interaction energy

U12 =
δ2
L

8π

[∫
[h1 × curl h2] dS2 +

∫
[h2 × curl h1] dS1

]
.

Using the relation

|curl h| = Φ0

2πδ2
L

1

r

we get

U12 =
Φ0

4π
h12, h12 =

Φ0

2πδ2
L

K0

(
|r1−r2|
δL

)
.

We see that lines repulse and the interaction energy decays as R
−1/2
12 exp(−R12/δL) at

long distances and behaves as ln |δL/R12| at small distances.

Interaction of a Vortex with a Surface

Now we discuss an important problem - interaction of a flux line with the sample’s surface.
Assume that we have a vortex line directed along z-axis and parallel to a plane surface (yz
-plane), the external magnetic field being H. Let SC occupy the semi space x. ≥ 0. The
London equation for the problem is

h+δ2
Lcurl curl h = zΦ0δ2(r− rL)

where rL = (xL, 0) is the ”line co-ordinate”. The boundary conditions at the surface are

h = H, (curl h)x = 0 , at x = 0

(the second condition is just the vanishing of the current normal to the surface). We search
solution as

h = h1+h2

where h1 = H exp(−x/δL) is the penetration of the external field. The field h2 is due to
the vortex. It can be calculated with the help of the image approach.

Let us add the auxiliary image vortex placed at the point rL = (−xL, 0) with all the
currents flowing in the opposite directions (mirror image), Fig. 17.5. It is clear that the
sum of the fields produced by the both lines meet the boundary conditions. Thus we can
prove that the field h2 is equal to this sum.

The resulting London equation becomes

h+δ2
Lcurlcurlh = zΦ0 [δ2(r− rL)−δ2(r−rL)]

and the total field is

h = H e−x/δL +
Φ0

2πδ2
L

[
K0

(
|r− rL|
δL

)
−K0

(
|r−rL|
δL

)]
.
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Figure 17.5: On the mirror image approach.

Then we go along the old way. The G free energy

G =

∫
dV
[

h2 + δ2
L(curl h)2

8π
− h ·H

4π

]
.

We are interested in the energy per unit length. This integral is evaluated on the total
volume of the sample (x. ≥ 0) excluding the core region.

Transferring to the surface integral we get the first contribution

δG =
δ2
L

4π

∫
S1+S2

dS

[(
1

2
h−H

)
× curl h

]
.

where S1 is the core’s surface while S2 is the sample’s one. We denote the corresponding
contributions as G1 and G2. As usual, at ζ → 0 the main contribution to S1 is the diverging
part of curl h and

G1 =
Φ0

4π

[
1

2
h(rL)−H

]
.

The second contribution can be written as

G2 = − δ
2
L

8π

∫
S2

dS [h1 × curl h]

because at the surface h2 = 0, h1 = H. Now we can split the field as h = h1+h2 and
consider the part, proportional to [h1 × curl h1] as an additive constant which is present
in the absence of the vortex. The remainder is

G2 =
δ2
L

8π

∫
S2

dS [h1 × curl h2] .

To get the result, we do the following trick. The integral could be rewritten as∫
S2

=

∫
S1+S2

−
∫
S1
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According to the London equation∫
S1+S2

dS [h1 × curl h2] =

∫
S1+S2

dS [h2 × curl h1]

We can see that the integral is very small. Indeed, at the surface S1 the field h1 is non-
singular while at the surface the field h2 is zero because of the boundary conditions. As a
result,

G2 =
δ2
L

8π

∫
S1

dS [h1 × curl h2] =
Φ0

8π
h1(rl).

The result is

G =
Φ0

4π

[
H e−x/δL +

1

2
h2(rL)−H

]
.

It is clear that G = 0 if the line is at the surface (h2 = 0). Now we should remember that
the field h2 consists from the initial and the mirror fields. The first contribution leads to
the free energy of a isolated vortex

G =
Φ0Hc1

4π

while the second is just the interaction energy between the line and the image

−Φ0

8π
h(2xL) with h(r) =

Φ0

2πδ2
L

K0

(
r

δL

)
.

The final result is

G =
Φ0

4π

[
H e−x/δL − 1

2
h(2xL) +Hc1 −H

]
.

The graphs of the function G(xL) for different H are shown in Fig. 17.6. In these
graphs the magnetic field is measured in units Φ0/4πδ

2
L. We see that at finite magnetic

fields a surface barrier appears (Bean-Livingstone barrier). This barrier is a consequence
of interplay between the tendency to penetrate the sample and attraction to the image
”antivortex”. The barrier is very important for the real life and should be taken into
account interpreting experimental results.

17.3 Magnetization curves.

Now we discuss the magnetization curves for type II SC. The free energy is

G = nLF−
∑
i,j

Uij −
BH

4π
(17.12)

where nL is the density of vortex lines, B = nLΦ0.
To make explicit estimates we separate 3 regions
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Figure 17.6: Surface barrier in type II superconductors.

1. Small B (nLδ
2
L � 1) where only nearest neighbor’s interaction is important.

2. Intermediate B (nLδ
2
L. � 1) where there are many vortices inside the interaction

region.

3. High B where nLζ
2 ∼ 1 and the cores overlap.

The Lower Critical Field Hc1.

To get Hc1 one can neglect interaction at all. We have

G ≈ B

(
F
Φ0

− H

4π

)
.

The bracket vanishes at H = Hc1 = 4πF/Φ0. Indeed, at H < Hc1 the free energy G
increases with the increases of B, so the equilibrium value is B = 0. At the same time, at
H > Hc1 there is a possibility to get a minimum at B 6= 0. Consequently, we get

Hc1 =
4πF
Φ0

=
Φ0

4πδ2
L

ln
δL
ζ
. (17.13)

Making use of the relations (17.8) we get for T = 0

Hc1

Hc

=
π√
24

ζ0

δL
ln
δL
ζ0

that is usually � 1.
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The vicinity of Hc1.

Repulsion of vortices becomes important and one should use the general equation (17.12).
A detailed calculation show that for all the values of B the most stable is triangle lattice
vortices (see Fig. 17.7). Taking into account that only nearest neighbors are important

Figure 17.7: Triangle vortex lattice. Solid lines correspond to constant values of ns.

we get

G ≈ B

4π

[
Hc1 −H +

1

2
z

Φ0

2πδ2
L

K0

(
d

δL

)]
,

where z is the number of nearest neighbors (z = 6) while the lattice constant d is determined
from the relation

B = nLΦ0 =
2√
3

Φ0

d2
. (17.14)

The result of calculations according to this scheme is shown in Fig. 17.8. We see the

Figure 17.8: Dependence G vs. B.

minimum which corresponds to the equilibrium value of induction B for a given H. The
magnetization curve calculated from this model, as well as experimental results for the
alloy More are shown in Fig. 17.9.
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Figure 17.9: Magnetization curves for the vicinity of Hc1. Crosses - experiment, dashed
line - calculations for a laminar model.

Intermediate magnetic fields.

In this case one should sum interaction energies for many vortices and we discuss the way
to perform calculations. We start with the London equation

h+δ2
Lcurl curlh = zΦ0

∑
i

δ2(r− ri)

where the sites ri form a 2D periodic lattice. Introducing the primitive cell we get the
Fourier component

hm = nL

∫
Cell

h(r) eimr d2r.

Certainly, hm 6= 0 only for the vectors proportional to the reciprocal lattice vector. From
the London equation we get

hm =
nLΦ0

1 +m2δ2
L

.

Then we write1

F =
1

8π

∫ [
h2 + δ2

L(curlh)2] d2r =
1

8π

∑
m

h2
m(1 +m2δ2

L) =

=
B2

8π

∑
m

1

(1 +m2δ2
L)

=
B2

8π
+
B2

8π

∑
m 6=0

1

(1 +m2δ2
L)
.

The minimal value of m in the last sum is of the order 1/d ∼ √nL Thus, in our region
m2δ2

L. � 1 and we can drop 1 in the denominator. The sum
∑

m 6=0m
−2 depends only on

the properties of the lattice. To get an estimate one can replace the sum by the integral∑
m 6=0

1

m2
→ 1

(2π)2

1

nL

∫
d2m

m2
=

1

2π

1

nL

∫
mdm

m2
=

1

2πnL
ln

∣∣∣∣mmax

mmin

∣∣∣∣
1We calculate the energy per 1 cm.
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with mmax ∼ 1/d, mmin ∼ 1/ζ. Finally,

F =
B2

8π
+
BHc1

4π

ln(βd/ζ)

ln(δL/ζ)
, β = 0.381 (trianglelattice, exactsolution).

Then, as usual, we put ∂G/∂B = ∂
(
F − BH

4π

)
/∂B = 0 and obtain (we should not forget

that B is related to d according Eq. (17.14)

H = B +Hc1
ln(β′d/ζ)

ln(δL/ζ)
, β′ = β/

√
e.

This result is in a good agreement with the experiment.

High field region

In this region where cores overlap our approach is definitely not sufficient. We return to
this region later after the analysis of the Ginzburg-Landau theory and show that the upper
critical field has the order Φ0/ζ

2.

17.4 Non-Equilibrium Properties. Pinning.

General Properties. Pinning.

It is clear that people are interested to fabricate a SC which is able to carry large supercur-
rent and, consequently, superconductivity should exist in a high magnetic field. We know
that in type II SC the upper critical field can be very high. At the same time, the question
arises:

Is the mixed state superconducting?

Indeed, in a magnetic field a force should act upon the vortices and leads them to move.
But moving vortices should produce non-steady magnetic fields and, consequently, energy
loss.

To make the estimates assume that there is one vortex with the current j and the exter-
nal current density is equal to jex, the total current being j + jex. Assuming that the corre-
sponding contribution to the free energy is nsmv

2
s/2 = (nsm/2)(j/nse)

2 = (4π/c2δ2
L)j2/2

we get for the interaction energy

U =
4π

c2δ2
L

∫
jex · j dV .

Then we remember that j depends only on the difference r− rL (where r is the 2D co-
ordinate in the plane perpendicular to the line). The force is

Fk= −
∂U
∂rLk

∝ −
∑
i

∫
dV jexi

∂ji
∂rLk

=
∑
i

∫
dV jexi

∂ji
∂rk

=
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=
∑
i

∫
dV jexi

(
∂ji
∂rk
− ∂jk
∂ri

)
+
∑
i

∫
dV jexi

∂jk
∂ri

.

The last item vanishes because by integration by parts we get div jex = 0. Thus

F =
4π

c2δ2
L

∫
[jex × curlj] dV .

Substituting the expression for curl j we get

fL =
Φ0

c
[jex × z]

for a separate vortex. The total force acting upon the vortex structure is just the Lorentz
force

FL =
1

c
[jex ×B] .

Now let us assume that a vortex moves with a given velocity vL and there is a viscous
braking force

fv = −ηvL.

As a result of force balance,

vL =
Φ0

ηc
[jex × z] .

We see that vL ⊥ jex⊥B. According to the laws of electrodynamics, such a motion produces
the electric field

E =
1

c
[B× vL] =

Φ0B

ηc2
jex.

We observe the Ohm’s law with the resistivity

ρ =
Φ0B

ηc2
.

If we assume that at B = Hc2 ρ = ρn (i.e. to the resistivity of the normal phase) we get

η(Hc2) =
Φ0Hc2

ρnc2
→ ρ = ρn

B

Hc2

.

This expression is only a very rough order-of-magnitude estimate. In fact the viscosity η
is a very complicated and interesting function of both the temperature and magnetic field.
From this point of view we get the conclusion that the superconductivity is destroyed at
H = Hc1.

Fortunately, this statement is wrong. In real materials there is pinning, i.e. the vortices
become pinned by the defects. One kind of pinning is the surface barrier we have discussed
earlier. It is clear that large-scale defects with size greater than ζ should be very effective.

To get a simple estimate let us consider a cavity in the SC with d.� ζ. Suppose that
the core is in the normal state that leads to the extra energy ∼ H2

c ζ
2 per unit length. If the
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vortex passes through the cavity, this energy is absent. Consequently, there is attraction
between the line and the cavity the force being of the order

fp ∼ H2
c ζ

(we have taken into account that at the distance ∼ ζ the vortex collides with its image).
Combining this expression with the expression for the Lorentz force we find the critical
current density able to start the motion

jc ∼ Hc
c

δL

(we have used the relations fL = jexΦ0/c and Hc ∼ Φ0/δLζ).
This discussion is oversimplified for many reasons.

• The pinning force acts upon a small part of the line while the Lorentz force is applied
to the whole line.

• Vortices interact, and one should take into account the deformation energy of the
lattice. So the problem is collective.

• It is not clear in general case what is the external current distribution inside the
sample because the critical current is B-dependent. This property will be discussed
in more detail in the following section.

As a result, the pinning is a very complicated property, and it is not completely under-
stood today (especially for high-Tc materials).

Fluctuations, Flux Creep

One can imagine that at very j < jc the resistance is zero while at j = jc the resistance
appears in a step-like character. This statement is wrong at finite temperatures. In fact,
pining centers create a potential profile for the vortices which can hop between the valleys
due to thermally activated fluctuations. As a result, the resistance becomes finite (but
exponentially small) at any finite temperature. This phenomenon is called the flux creep.
In other words, the true critical current is zero at any finite temperature. That is why one
should be very accurate in interpreting relevant experiments.

One of the consequences of the creep is dumping of the ”persistent current”. In practice,
for many materials it can be not so important.

Another consequence are current instabilities. Assume that at some region a bunch
of vortices hop from one position to another. Immediately this region becomes heated
that leads to decrease of the critical current. As a result, the heating increases. Those
instabilities are extremely important for superconductor engineering. The typical way to
fight with them is the thermal shunting (composite materials).

The theory of creep and thermal instabilities is very complicated, and we do not discuss
it in detail.
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Critical State at T = 0.

In this section we discuss a very popular simplified model to treat the external current
distribution in a type II SC - the critical state model.

Suppose that the SC is in a mixed state with the field H‖z. In the equilibrium the
vortex density is constant and equal to B(H)/Φ0. If we come to a metastable state

• the vortex density is position dependent,

• there is the macroscopic current

j =
c

4π

∂B

∂x
.

Now let us discuss the interaction forces. The first type is the repulsion one, we can
describe them as a pressure p in the 2D vortex system. The total force acting upon the
unit volume is −∂p/∂x. Another type is the pinning force which has the maximal value
αm. the necessary condition of the mechanical equilibrium is just∣∣∣∣∂p∂x

∣∣∣∣ ≤ αm.

The critical state model uses the condition∣∣∣∣∂p∂x
∣∣∣∣ = αm

to determine the flux distribution.
To be more precise, we estimate the force from the thermodynamic considerations.

Consider a piece of the xy-plane with the area S having N vortices (the external field is
parallel to z-axis). We have

G = SG, p = −
(
∂G
∂S

)
N

= −G− S∂G
∂S

At the same time, B = NΦ0/S, and

dS

S
= −dB

B
.

As a result

p = −G+B
∂G

∂B
.

Inserting the definition of the .thermodynamic potential G

G(B) = F (B)− BH

4π
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and taking into account that in the equilibrium

∂G

∂B
= 0 → H(B) = 4π

∂F

∂B

we get (Problem 17.2)

∂p

∂x
=

B

4π

∂H(B)

∂x
(17.15)

In the most important cases at Hc2.� H.� Hc1 we have H(B) ≈ B, and

−∂p
∂x

= − B
4π

∂B

∂x
=
Bjy
c
.

In this case the current distribution is given by the equation∣∣∣∣ B4π ∂B∂x
∣∣∣∣ =

∣∣∣∣Bjyc
∣∣∣∣ = αm at H(B).� Hc1.

To solve the problem one needs the dependence αm(B). According to Bean’s model This
dependence is linear and jy=const. According to the Kim-Anderson model the quantity
αm is B-independent. The profiles of the magnetic induction for both models are shown
in Fig. 17.10. Usual ways to study pinning is to observe the penetration of slow-varying

Figure 17.10: Magnetic induction profiles for the Bean and Kim-Anderson models.

magnetic field in a bulk or hollow cylinder.
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17.5 Problems

17.1. Prove that the areas under magnetization curves are the same for type I and type
II SC with the same Hc.
17.2. Derive Eq. (17.15).



Chapter 18

Microscopic Theory of
Superconductivity. Basic Concepts

18.1 Phonon-Mediated Attraction

The first important motivation to study electron-phonon interaction was discovery of the
isotopic effect, i.e. the dependence of the critical parameters on the atomic mass

Tc ∝M−1/2 , Hc ∝M−1/2.

Relying upon this fact the concept of phonon-mediated electron-electron attraction has
been introduced (Frölich, Bardin, 1950).

To understand what happens let us discuss the scattering process shown in the left
panel of Fig. 18.1. The amplitude of this second-order process is

Figure 18.1: Electron-phonon processes.

|Vq|2

εk1 − εk1−q − ~ωq

, Vq ≡ Vk−q,k.

353
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One should also add the amplitude of the process with phonon absorption shown in the
right panel,

|Vq|2

εk2 − εk1+q − ~ωq

.

We have taken into account that ω−q = ωq, |V−q| = |Vq| . If we take into account the
conservation law

εk1+εk2=εk′1+εk′2

we obtain

− 2|Vq|2~ωq

(~ωq)2 − (εk1 − εk1−q)2 .

Remembering that

Vq ∼ −i
pF√
Vnm

we get the following expression for the total amplitude

− ~3

pFmV
(~ωq)2

(~ωq)2 − (εk1 − εk1−q)2 .

At |εk1−εk1−q| � ~ωq this amplitude is negative, and k-independent. Thus it is equivalent
to a short-range attraction. Another feature is that it is the interaction with the total
orbital moment equal to 0 (it is independent on k -direction). Consequently, the wave
function should be symmetric with respect to the interchange of the electron co-ordinates,
But, at the same time, electrons are Fermi particles, and the total wave function should be
antisymmetric. Thus the spin wave function should be also antisymmetric, i.e. the spins
should be opposite. It is the only way to meet the Pauli principle. It is clear that phonons
with maximal q are most important (density of states increases with q). Consequently we

can say that electrons within a thin layer
∣∣∣εk1 − εk′1

∣∣∣ ∼ ~ωD near the Fermi surface attract,

that in the momentum space means ∆p ∼ ~ωD/vF.
Let us find a typical spatial spread of the corresponding quantum state from the un-

certainty principle

∆r ∼ ~/∆p ∼ vF/ωD ∼ (vF/s)a ∼ a
√
M/m.

Thus, phonon attraction is a long-range one, its order-of-magnitude estimate being ~3/mpF .
At the same time, there is Coulomb repulsive forces. It is a short-range one due to screening
and it can be written as

e2a2δ(r1−r2).

The ratio is
e2a2

~3/mpF
∼ e2

~vF
∼ 1.
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Actually, this is a very rough estimate, and in real metals the contributions to the interac-
tion differ strong enough. It the following we neglect Coulomb effects and will model the
interaction as constant −λ where

λ ∼ ~3

mpF
∼ 1

g(εF )

in the interval
εF − ~ωq < ε < εF + ~ωq

and λ = 0 outside this interval (the so-called BCS model).

18.2 Cooper Pairs

Attraction does not mean formation of a bound state. Indeed, in 3D case the bound state
is formed only if the potential is strong enough. The situation in 1D case is completely
different: one can form a bounded state at any attraction strength. At the first glance, this
model has nothing to do with the real life, but L. Cooper (1956) was first to understand
that it is the case. Unfortunately, his original paper had a mistake and we shall follow the
correct derivation below.

To start, let us reformulate the quasiparticle concept which has been used for normal
metals. We know, the electron states near the Fermi surface are very similar to ordinary
particles, they decay very weakly. Thus, it is natural to use the Fermi level as the origin
of the energies. As a result, we can classify the particles with ε > εF as particle-like
excitations. We write their energies as

ξ(e) =
p2

2m
− p2

F

2m
≈ vF (p− pF ).

The excitations with ε < εF behave as anti-particles (or holes). It is conventional to write
their energy as

ξ(h) = −ξ(e) =
p2
F

2m
− p2

2m
≈ vF (pF − p)

to have positive energy. As a result, one can describe the quasiparticle spectrum in a
normal metal as

ξ(p) = vF (p− pF ).

This spectrum is shown in Fig. 18.2, the right branch corresponding to particle-like ex-
citations while the left branch - to antiparticle-like ones. One should remember that
anti-particles have the electric charge of the opposite sign.

Consider the interaction of 2 quasiparticles with the same |k|. The SE is

[H0(r1) +H0(r2) + U(r1, r2)] Ψ(r1, r2) = EΨ(r1, r2) (18.1)

where H0(r1) is the free quasiparticle Hamiltonian

H0(r1)ψk(r1) = |ξk|ψk(r1)
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Figure 18.2: Quasiparticle spectra in normal (solid line) and SC (dashed line) states.

[for free particles ψk(r1) = (V)−1/2 exp(ikr1)].
In the ground state both the total momentum and total spin should vanish. As a result,

one can construct the wave function as

Ψ(r1, r2) =
∑
k

ckψk↑(r1)ψ−k↓(r2) (18.2)

where arrows mean the spin projections. Substituting (18.2) into Eq. (18.2) we get (Check!)
the following integral equation

2|ξk|ck +
∑
k′

Ukk′ck′ = Eck.

To solve the equation we use the model

Ukk′ =

{
−λ, kF − ωD/vF < |k|, |k′| < kF + ωD/vF
0, outside the interval .

(18.3)

Denoting

I =

|k′|=kF+ωD/vF∑
|k′|=kF−ωD/vF

ck′ (18.4)

we get

ck =
λI

2|ξk| − E
.

Substituting this equation into Eq. (18.4) we get the self-consistency equation

I =

|k′|=kF+ωD/vF∑
|k′|=kF−ωD/vF

λI

2|ξk| − E
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Now recall that we are interested in a bound state with negative energy. Denoting E = −2∆
and transferring the sum into the integral we get

1 =
λg(εF )

2
ln

(
~ωD
∆

)
(the factor 1/2 is due to the fact that we sum over the states with one spin projections
while g is defined as the sum over spin projections) or

∆ = ~ωD exp

[
− 2

λg(εF )

]
. (18.5)

The exact calculation has an extra factor 2 which is due to the fact that all the matrix
elements are to be calculated in the renormalized state (see below).

Let us discuss Eq. (18.5).

• As we have seen, λg(εF ) ∼ 1. Actually, this product is small enough to make ∆ �
~ωD.

• We see that ∆ 6= 0 at any interaction strength. The reason is that we have integrated
only in the vicinity of the Fermi surface. Indeed, our rule∫

d3k

(2π)3
→ g(εF )

2

∫
dξ

corresponds to 1D problem.

• We see that presence of the Fermi surface is very important. So we can suspect that
its temperature smearing will strongly influence upon superconductivity.

18.3 Energy Spectrum

Now we come to a more detailed calculation. For this we need to minimize the free energy
with respect to the wave functions. To do this we need to calculate the ground state energy
for attracting electrons.

As we have mentioned, it is convenient to come to the quasiparticle description. Then
means that we will keep the chemical potential εF fixed as the origin of the energy reference
frame. Technically, we transfer the Hamiltonian to H−εFN where N =

∑
kσ a

†
kσakσ is the

operator of number of particles.
We have

H− εFN =
∑
kσ

ξka
†
kσakσ −

λ

V
∑

k1+k2=k′1+k′2
k1 6=k′1

a†k′1↑
a†k′2↓

ak2↓ak1↑ . (18.6)
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All the sums are calculated over the thin interval ∼ ~ωD near the Fermi surface. Now
we come to a very important point - introduction of quasiparticle operators. In a normal
metal we can define

at p > pF : akσ = αkσ,

at p < pF : akσ = α†−k−σ

where α(α†) are the quasiparticle operators. The physical meaning is transparent: annihi-
lation of an electron below the Fermi surface is just the same as creation of a hole with
opposite values of momentum and spin.

In a superconductor, the ground state is more complicated, and the simplest way to
calculate the spectrum is to use the Bogolyubov transform

ak↑ = ukαk↑ + vkα
†
−k↓,

ak↓ = ukαk↓ − vkα†−k↑.

Note that this transform conserves the momentum. Then we use the coefficients uk, vk
as parameters to minimize the free energy. The key idea - to dagonalize the Hamiltonian
(18.6).

Let us check the commutation rules for the quasiparticle operators. We have{
akσ, a

†
kσ

}
= u2

k

{
αkσ, α

†
kσ

}
+ v2

k

{
α−k−σ, α

†
−k−σ

}
+ σukvk {αkσ, α−k−σ}+ σukvk

{
α†−k−σ, α

†
kσ

}
= 1.

If we request the usual Fermi commutation rules for the quasiparticle commutators we
obtain the relation

u2
k + v2

k = 1 (18.7)

that leaves only one free variable, say vk.

Now we can express the energy through the quasiparticle numbers nkσ =
〈
α†kσαkσ

〉
.

We get

〈H−εFN〉 =
∑
k

ξk
[
u2
k (nk↑ + nk↓) + v2

k(2− nk↑ − nk↓)
]
−

− λ
∑
k

ukvk(1− nk↑ − nk↓)
∑
k′

uk′vk′(1− nk′↑ − nk′↓) ≡ E − εFN. (18.8)

Now we calculate the variation with respect to vk taking into account (18.7). We get
(Problem 18.1)

2ξkukvk = ∆(1− 2v2
k), (18.9)

∆ = λ
∑
k

ukvk(1− nk↑ − nk↓). (18.10)

The solution of the equation is

u2
k =

1

2

(
1 +

ξk
εk

)
, v2

k =
1

2

(
1− ξk

εk

)
(18.11)
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where

εk =
√
ξ2
k + ∆2. (18.12)

In the following we consider isotropic model where the spectrum is independent of the
direction of k.

Now we can calculate the quasiparticle energy as a variational derivative of the total
energy with respect to the distribution function. Thus we have

δE =
∑
k

(εk↑δnk↑ + εk↓δnk↓) .

Because of the symmetry of the problem we get εk↑ = εk↓, nk↑ = nk↓. After the variation
of (18.8) with respect to, say, nk↑ at constant uk, vk we get

εk↑ =
δE
δnk↑

=
√
ξ2
k + ∆2 = εk

So we come to the following conclusion

• There is the gap ∆ in the quasiparticle spectrum.

• At |ξk| � ∆ we come to the normal metal properties: εk → |ξk|, at ξk > 0 uk →
1, vk → 0, at ξk < 0 uk → 0, vk → 1. Thus, we come to the quasiparticles of the
normal metal.

The presence of the gap is very important. It means that there is no low-energy
excitations and the electron liquid may be superfluid. Indeed, if the liquid moves as total
with the velocity v the energy in the laboratory frame of reference is

ε(p) + pv.

Consequently, to create a new quasiparticle one needs the condition ε(p) + pv <0 to be
met, or

v < vc = min
ε(p)

p
.

In the presence, of the gap we come to the relation1

vc ∼
∆

pF
.

We have discussed here the simplest variant of the theory with the s-state pairing. The
pairing with non-zero orbital moment has been discussed in connection with superconduc-
tivity in the so-called heavy fermion compounds and with superfluid 3He.

1The life is not so simple. One can imagine also collective excitations which may have no gap. As has
been shown, it is not the case because of the finite electron charge.
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18.4 Temperature Dependence of the Energy Gap

Now we are prepared to discuss the temperature dependence of the gap. From Eq. (18.10)
we get

1 =
λ

2

∫
(dk)

1− 2n0(εk)

εk
=
λg(εF )

2

∫ ~ωD

0

dξ
tanh(

√
ξ2 + ∆2/2kBT )√
ξ2 + ∆2

. (18.13)

At T → 0 tanh(
√
ξ2 + ∆2/2kBT )→ 1 and

1 =
λg(εF )

2
ln

2~ωD
∆(0)

→ ∆(0) = 2~ωD exp (−2/λg(εF )) (18.14)

(note the extra factor 2). At T → Tc ∆→ 0, and

1 =
λg(εF )

2

∫ ~ωD

0

dξ
tanh(ξ/2kBTc)

ξ
=
λg(εF )

2
ln

2~ωDγ
πkBTc

, γ = 1.78.

Thus

kBTc =
2~ωDγ
π

exp (−2/λg(εF )) (18.15)

and
∆(0) =

π

γ
kBTc = 1.76kBTc. (18.16)

To discuss the temperature dependence one can simply calculate the integral in (18.13).
It is interesting to show the analytical formula, so we analyze briefly this integral. At low
temperatures we can rewrite the formula as

ln
∆(0)

∆
=

∫ ∞
0

1− tanh(
√
ξ2 + ∆2/2kBT )√
ξ2 + ∆2

dξ = 2f

(
∆

kBT

)
where

f(x) =

∫ ∞
1

dy

(1 + eyx)
√
y2 − 1

, y =

√
ξ2 + ∆2

∆
.

Here we have used the expression (18.14) and expanded the integration region to infinity
(the important region is ∼ ∆). We are interested in large values of x,

f(x) =

∫ ∞
1

dy
∞∑
n=1

(−1)n+1 e−nyx√
y2 − 1

.

Then we use the integral representation for the McDonald function

Kν(z) =
Γ(1/2)

Γ(ν + 1/2)

(z
2

)ν ∫ ∞
1

e−yz(y2 − 1)v−1/2 dy
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and get

f(x) =
∞∑
n=1

(−1)n+1K0(nx) ∼
√

π

2x
e−x.

Thus, at T � Tc

∆(T ) = ∆(0)−
√

2π∆(0)kBT e
−∆(0)/kBT︸ ︷︷ ︸ .

∼ number of quasiparticles
(18.17)

At T → Tc it is convenient to expand over ∆→ 0. To do this we also divide the expression
(18.13) by (λg(εF )/2) and subtract its limit at ∆ = 0. We get

ln
Tc
T

=

∫ ∞
0

dξ

[
tanh ξ

ξ
− tanh(

√
ξ2 + ∆2/2kBT )√
ξ2 + ∆2

]
.

Then we use the formula

tanh
(πx

2

)
=

(
4x

π

) ∞∑
k=0

1

(2k + 1)2 + x2
.

Substituting this formula into the previous one, expanding over ∆ and integrating over ξ
we get

ln
Tc
T

= 2
∞∑
n=1

(−1)n+1 (2n− 1)!!

(2n)!!

(
∆

πkBT

)2n ∞∑
k=0

1

(2k + 1)2n+1
.

The first item leads to

∆ ≈ 3.06

√
Tc

Tc − T
.

The graph of the dependence ∆(T ) is given in Fig. 18.3.

Figure 18.3: Temperature dependence of the energy gap.
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18.5 Thermodynamics of a Superconductor

According to statistical physics, the thermodynamic potential Ω depending on the variables
T,V , and chemical potential ε is

Ω = −kBT ln Z,

with the partition function

Z =
∑
s,N

exp

[
−EsN −Nε

kBT

]
= Tr

[
exp

(
−H−εN

kBT

)]
.

Splitting the Hamiltonian as H0 +Hint and differentiating with respect to the interaction
constant λ we get

∂Ω

∂λ
=

1

λ

Tr
[
Hint exp

(
−H−εN

kBT

)]
Tr
[
exp

(
−H−εN

kBT

)] =
1

λ
〈Hint〉 .

Substituting the expression for the interaction Hamiltonian2

Hint = −λ
∑

k1+k2=k′1+k′2k1 6=k′1

a†k′1↑
a†k′2↓

ak2↓ak1↑

and expressing the electron operators through the quasiparticle ones as

ak↑ = ukαk↑ + vkα
†
−k↓, ak↓ = ukαk↓ − vkα†−k↑

we get (Problem 18.2)
∂Ω

∂λ
= −∆2

λ2
. (18.18)

Then we can integrate over λ to get

Ωs − Ωn = −
∫ λ

0

dλ1

λ2
1

∆2(λ1).

It is more convenient to change variables to introduce inverse function λ1(∆1) to get dλ1 =
(dλ1/d∆1)d∆1. We get

Ωs − Ωn =

∫ ∆

0

dλ−1
1 (∆1)

d∆1

∆2
1 d∆1.

We can obtain the integrand from the self-consistency equation

ln
∆(0)

∆
=

∫ ∞
0

1− tanh(
√
ξ2 + ∆2/2kBT )√
ξ2 + ∆2

dξ = 2f

(
∆

kBT

)
,

2For brevity we assume V =∞.
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∆(0) = 2~ωD exp (−2/λg(εF )) .

Finally,

λ−1(∆) =
g(ε)

2

[
ln

2~ωD
∆
− 2f

(
∆

2kBT

)]
.

As a result, we get the exact formula

Ωs − Ωn =
g(ε)

2

∫ ∆

0

d

d∆1

[
ln

2~ωD
∆1

− 2f

(
∆1

2kBT

)]
∆2

1 d∆1.

It is easy to calculate asymptotic behavior because we know all the functions. At T = 0

Ωs(0) = −g(ε)∆2(0)

4
.

This formula is clear enough: the bonding energy ∼ ∆ while the number of electron in the
actual region ∼ g(ε)∆. The temperature-dependent part at low temperatures is

Ωs(T )− Ωs(0) ∼ g(ε)
√

2π(kBT )3∆(0)e−∆(0)/kBT .

As a result, we get

Ss = −∂Ωs

∂T
≈ g(ε)

√
2π∆3(0)

kBT
e−∆(0)/kBT ,

Cs = T
∂Ss
∂T

= kBg(ε)

√
2π∆5(0)

(kBT )3 e
−∆(0)/kBT .

Near Tc we get

Ωs − Ωn = −g(ε)
7ζ(3)

32

∆4

(πkBT )2

where ζ(3) is the Riemann zeta function

ζ(x) =
∞∑
1

1

nx
.

In the same way, we can obtain the specific heat

Cs(Tc) = Cn(Tc) +
4

7ζ(3)
kB
pFm(kBTc)

~3
, Cn(Tc) = kB

pFm(kBTc)

3~3
.

Making use of all the relations we get near Tc

Cs(T )

Cn(Tc)
= 2.42 + 4.76

T − Tc
Tc

.

The temperature dependence of the specific heat is shown in Fig. 18.4. We can also de-
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Figure 18.4: Temperature dependence of the specific heat.

termine the critical magnetic field. Indeed, the additional terms to all the thermodynamic
potentials are equal if they are expressed in the corresponding variables. In particular,

(δF )N,T,V = (δΩ)ε,T,V

and

Ωn − Ωs =
H2
c

8π
.

Thus,
Hc(0) =

√
2πg(ε)∆(0).

At low temperatures we have

Hc(T ) = Hc(0)

[
1− π2

3

(kBT )2

∆2(0)

]
while near Tc

Hc = kB

√
16π

7ζ(3)

mpF
~3

(Tc − T ) ≈ 1.735Hc(0)
Tc − T
Tc

.

In conclusion to this section, we should mention that one very important assumption has
been extensively used, namely the interaction assumed to be weak:

λg(ε)� 1.

There are some materials where this condition is invalid. The theory should be generalized
to treat those materials.

18.6 Electromagnetic Response of a Superconductor

In this section we analyze the applicability of the London equation and its generalization.
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Qualitative Discussion

When we’ve derived the London equation

j = −QA, Q =
nee

2

mc2

we thought that the current is transferred by the electrons. Now we know that Cooper
pairs are responsible for the superconductivity. The main difference is that Cooper pairs
have quite large size ζ ∼ ~vF/∆� a (at ∆ ≈10 K ζ ∼ 10−4 cm). So we face the problem:
why Cooper pairs do not scatter each other? The answer is that they represent eigenstates
of the SE and their wave function are orthogonal. That means that one can discuss the
correlation length rather than the size of pairs.

Because of the correlation, the relation current-vectorial potential becomes non-local

ji = −
∑
k

∫
Qik(r− r′)Ak(r

′) dV ′

where Qik(r) decays at |r| >ζ. The London equation is the case at very slow variation of
A(r). In this situation one can replace A(r′)→ A(r) and∫

Qik(r− r′) dV ′ = δikQ.

We know that the characteristic scale for the variation of A is δ, consequently we return to
the London limit at δ � ζ. In the opposite limiting case, δ � ζ, we can assume that only
the electron which live for a long time in the surface region ∼ δ are effective. The number
of those electrons is proportional to the angle θ ∼ δ/ζ and neff ≈ neδ/ζ. As a result,

δ ∼

√
mc2ζ

4πnee2δ
→ δP ∼

[
mc2ζ

4πnee2

]1/3

.

As was mentioned, most of pure materials are type I (or Pippard) ones. Nevertheless, one
can decrease the ratio ζ/δ introducing defects, impurities, etc. Moreover, we’ll see later
that near Tc all the SC are type II ones.

It is interesting that all the formulas do not feel if the carriers are single electrons, or
pairs (one can check it replacing e→ 2e, ne → ne/2).

Theory of the Meissner Effect at T = 0.

Here we consider only the simplest case: response of a SC to a weak steady magnetic field
at T = 0. The aim is just to show the way of microscopic calculations.

According to quantum mechanics, in the presence of a magnetic field the Hamilton
acquires the additional factor

δH = −1

c

∫
jδA dV that leads→ δE = −1

c

∫
〈j〉 δA dV
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where 〈j〉 is the quantum mechanical average of the current (in the following we omit the
angular brackets 〈· · · 〉). We will do like this: we calculate the contribution to the energy
and than find the variation with respect to δA. It is clear that in a weak field we need 2nd
order of the perturbation theory because the current is proportional to A.

The prescription to take the field into account is to replace 3

p = −i~∇ → −i~∇+
e

c
A

As a result, for a bare electron the Hamiltonian is

1

2m

[
−~2∇2 − i~e

c
(A∇+∇A) +

(e
c

)2

A2

]
.

We see that only the first item conserves the particle momentum. To take the lack of
conservation into account we expand the vector potential in the Fourier series

A(r) =
∑
q

Aqe
iqr,

the component Aq can be understood as the absorption of electromagnetic quantum with
the momentum ~q. Using the second quantization, we write the interaction Hamiltonian
as a sum of 2 parts

H1 =
e

mc

∑
p,q,σ

[
(p−~q)a†pσap−~q,σ + pa†pσap−~q,σ

]
Aq,

H2 =
e2

2mc2

∑
p,q,q′,σ

a†pσap−~q−~q′,σAqAq′ .

Then we transform
∑

σ a
†
pσap′,σ through quasiparticle operators∑

σ

a†pσap′,σ = upup′(α
†
p↑αp′↑ + α†p↓αp′↓) + vpvp′(α−p↓α

†
−p′↓ + α−p↑α

†
−p′↑)+

+upvp′(α
†
p↑α

†
−p′↓ − α

†
p↑α

†
−p′↓) + vpup′(α−p↓αp′↑ − α−p↑αp′↓).

The part H2 is of he 2nd order and it is enough to average it over the ground state. We see
that only the item proportional to vpvp′ gives a finite contribution, and k = k′, q = −q′.
At low temperatures np↑ = np↓ = 0, and

E2 =
e2

mc2

∑
p,q

v2
pAqA−q.

3Remember: the charge is denoted as −e.
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The first order contribution from H1 vanishes because
∑

p pv2
pδq,0 = 0. Thus, in the second

order

E1 =
∑
m 6=0

|〈0|H1|m〉|2

E(0) − E(m)

.

Then, in the ground state there is no quasiparticles, and only transitions involving 2
quasiparticles are important. As a result

〈0|H1|m〉 =
2

mc
(upvp−~q − vpup−~q)(2p−~q), E(0) − E(m) = −(εp + εp−~q).

Finally

E1 = −
( e

2mc

)2∑
p,q

(upvp−~q − vpup−~q)2 ((2p−~q) ·Aq) ((2p−~q) ·A−q)

εp + εp−~q
.

We have taken into account that Aq = [A−q]∗ and that quasiparticle operators for different
momenta anti-commute. Now we use the gauge div A =0, or (qAq) = 0. We change
p→ p+~q/2 and denote

ξp+~q/2 ≡ ξ+, ξp−~q/2 = ξ−.

As a result

E1 = −1

2

( e

mc

)2∑
p,q

(pAq)(pA−q)(ε+ε− − ξ+ξ− −∆2)

ε+ε− (ε+ + ε−)
.

Remembering that

δE = −1

c

∑
q

jqδA−q

we get

jq = −2e2

mc

∑
p

v2
pAq +

e2

m2c

∑
p

p(pAq)(ε+ε− − ξ+ξ− −∆2)

ε+ε− (ε+ + ε−)
.

In the first integral 2
∑

p v
2
p = ne. In the second integral we put ~q � pF and

ξ± =
(p± ~q/2)2 − p2

F

2m
≈ ξ ± ~qvF cos θ

(z-axis is directed along q). Finally, coming to the integral over momenta and calculating
the perpendicular current we get

Q(q) =
nee

2

mc
− e2p4

F

m2cvF

1

(2π~)3

∫ ∞
−∞

dξ

∫
cos2 θ sin2 θ

(ε+ε− − ξ+ξ− −∆2)

ε+ε− (ε+ + ε−)
dΩ =

=
nee

2

mc
F
(

~qvF
2∆(0)

)
, F(z) =

3

2z

∫ 1

0

(1− t2) dt

t

arsh (zt)√
1 + z2t2
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(we have introduced t = cos θ). This integral could be analyzed in limiting cases. At small
q (z → 0) F(z)→ 1 (London limiting case). At large q only small values of t are important.
Thus we can neglect t2 in comparison with 1 and get

F(z) =
π2

4z
→ Q(q) =

3π2

4

nee
2

mc

∆(0)

~vF
1

q
.

This formula is not enough to calculate the penetration depth because it is determined for
inhomogeneous space. The result depends on the scattering conditions for the electron at
the surface. The result for mirror reflection has the form

δP =
28/3

311/6π2/3
δ

2/3
L

(
~vF
∆(0)

)1/3

,

i.e. it corresponds to the qualitative estimates.

Electrodynamics at T 6= 0 (London limit).

Now we briefly discuss the influence of finite temperature. First, we emphasize that near Tc
all the SC meet the London limit. Indeed, at all the temperatures the correlation length is
of the order of ζ0 ∼ ~vF/Tc. At the same time, the penetration depth diverges at T → Tc.

The influence of the finite temperature leads to creation of quasiparticles, i.e. to decrease
of the number of superconducting electrons. To estimate the number of SC electrons let
us calculate the momentum of the system if all the particles move with the same velocity
u. We get

P =

∫
pnF (ε− pu) (dp) ≈

∫
p(pu)

(
−∂nF
∂ε

)
(dp) = g(εF )

∫
dξ

∫
dΩ

4π
p(pu)

(
−∂nF
∂ε

)
.

Then, we have ∫
dΩ

4π
p(pu) ≈ 1

3
p2
Fu.

Introducing new variable ϕ as ξ = ∆ sinhϕ we get

P =
1

3
p2
Fug(εF )G

(
∆

kBT

)
, G(z) = 2z

∫ ∞
0

coshϕdϕ

(ez coshϕ + 1)(e−z coshϕ + 1)

We denote
P =nnmu

where nn is the number of ”normal electrons”. We see that

nn
ne

= G
(

∆

kBT

)
=

1

T

d∆

dT

(
d

dt

∆

T

)−1

.

We check the last formula remembering that

ln
∆(0)

∆(T )
= 2

∫ ∞
0

dϕ

(e(∆/kBT ) coshϕ + 1)
.
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One can show that at T → Tc nn/ne → 1 (∆ ∝
√
Tc − T ). At the same time, at T < Tc

this ratio is less than 1. It means that displacement of quasiparticles is not the same as
displacement of all the liquid, the rest being superconducting electrons. We have

ns
ne

= 1− nn
ne

= −
[
d ln(∆/T )

d lnT

]−1

.

It is just the number which enters the London penetration depth at finite temperatures.
At T → Tc

ns
ne

= 2
Tc − T
Tc

→ δL(T ) = δL(0)

√
Tc

2(Tc − T )
.

At the end of this section one should mention that although all the SC come to the London
limit near Tc this transition takes place very close to Tc if δL(0)� ζ0. In the Pippard region

δP (T ) = δP (0)

[
∆

∆(0)
tanh

(
∆

2kBT

)]−1/3

∝
(

Tc
Tc − T

)1/3

near Tc.

18.7 Kinetics of Superconductors

Formulas for Transition Probabilities

Consider the case where a weak a.c. field acts upon a SC. Such a field can be created by
acoustic wave, or by electromagnetic wave.

Acoustic Wave

As we know, acoustic field create a perturbation Λikuik(r,t). Denoting the interaction
matrix element as Λuk−k′ we get

Hint =
∑
k,k′,σ

Λuk−k′a
†
kσak′σ.

Microwave Field

In the linear approximation the perturbation is (e/2mc)(pA + Ap). As a result

Hint =
e

mc

∑
k,k′,σ

(Ak−k′ · (k + k′)) a†kσak′σ.

Thus in general case

Hint =
∑
k,k′,σ

〈
k′σ′

∣∣∣B̂∣∣∣kσ〉 a†kσak′σ′ . (18.19)

There are two kinds of processes induced by Hint.
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1. Transitions between different states, described by quasiparticle operators. To ana-
lyze them we transform the Hamiltonian (18.19) to the quasiparticle operators α.
We have done this transformation earlier. In a compact form in can be written as
(Problem 18.3)

a†mσ = umα
†
mσ +

∑
σ′

ρσσ′α−mσ′ , where ρ =

(
0 −1
1 0

)
. (18.20)

As a result

a†kσak′σ′ = ukuk′α
†
kσαk′σ′ + vkvk′

∑
σ1σ2

ρσσ1ρσ′σ2α−kσ1α
†
−k′σ2+

+ ukvk′
∑
σ1

ρσ′σ1α
†
kσα

†
−k′σ1 + vkuk′

∑
σ1

ρσσ1α−kσ1αk′σ′ . (18.21)

Note that the items α†kσαk′σ′ and αkσ1α
†
k′σ2

describe scattering of quasiparticles while

α†kσα
†
−k′σ1 and α−kσ1αk′σ′ describe creation and annihilation of pairs of quasiparticles.

(The number of quasiparticles is not conserved!).

2. The perturbation can also modulates the system’s parameters. Usually it is not so
important.

Now we analyze different processes.

Scattering processes.

Making use of anti commutation of quasiparticle operators we get the following expression
for transition matrix element

M(kσ|k′σ′) = ukuk′
〈
k′σ′

∣∣∣B̂∣∣∣kσ〉− vkvk′∑
σ1σ2

ρσ2σ′ρσ1σ

〈
−k′σ′

∣∣∣B̂∣∣∣− kσ
〉
.

In fact,
∑

σ1σ2
ρσ2σ′ρσ1σ

〈
−k′σ′

∣∣∣B̂∣∣∣− kσ
〉

is the matrix element where all the momenta

and spins are reversed which means time reversion. It is clear that they can differ only by
signs: ∑

σ1σ2

ρσ2σ′ρσ1σ

〈
−k′σ′

∣∣∣B̂∣∣∣− kσ
〉

= η
〈
k′σ′

∣∣∣B̂∣∣∣kσ〉
where

η =

{
+1, for the case 1
−1, for the case 2

.

Thus

M(kσ|k′σ′) = (ukuk′ − ηvkvk′)
〈
k′σ′

∣∣∣B̂∣∣∣kσ〉
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where the coefficient (ukuk′ − ηvkvk′) is called the coherence factor. This factor is very
important. The resulting contribution to the transition rate is

νkk′ = 2π
~ |M(kσ|k′σ′)|2 {nF (εk′) [1− nF (εk)]− nF (εk) [1− nF (εk′)]}×

×δ(εk − εk′ − ~ω).
(18.22)

Consequently, the absorbed power is

W1 =
∑
kk′

~ω νkk′ .

Denoting B2 ≡
∣∣∣〈k′σ′

∣∣∣B̂∣∣∣kσ〉∣∣∣2 where the bar means angle average over the Fermi surface

we get

W1 = 2πωB2

∫ ∞
∆

dε dε′ gs(ε)gs(ε
′)(ukuk′ − ηvkvk′)2×

× [nF (ε′)− nF (ε)] δ(ε− ε′ − ~ω).

Here we have introduces the density of states with respect to the energy ε

gs(ε) = g(εF )

∣∣∣∣dξdε
∣∣∣∣ = g(εF )

ε√
ε2 −∆2

.

According to the definition,

(ukuk′ − ηvkvk′)2 =
1

2

[
1 +

ξξ′

εε′
− η∆2

εε′

]
.

Finally

W1 = 2πωB2g2(εF )

∫ ∞
∆

dε

∫ ∞
∆

dε′
εε′ − η∆2√

(ε2 −∆2) (ε′2 −∆2)
×

× [nF (ε′)− nF (ε)] δ(ε− ε′ − ~ω). (18.23)

We can make the same calculation for the second part, corresponding to creation and
annihilation of quasiparticles which is nonzero at ~ω > 2∆. The result can be formulated
as

Ws

Wn

=
1

~ω

∫ ∞
−∞

dε

∫ ∞
−∞

dε′
εε′ − η∆2√

(ε2 −∆2) (ε′2 −∆2)
Θ(|ε| −∆) Θ(|ε′| −∆)×

× [nF (ε′)− nF (ε)] δ(ε− ε′ − ~ω). (18.24)

Now we discuss the applications of the formula.

Ultrasonic Absorption

We have η = 1. At ~ω � ∆

Ws

Wn

=

∫
|ε|>∆

dε
ε2 −∆2

ε2 −∆2

(
−∂nF
∂ε

)
=

2

1 + e∆/kBT
.

At T = 0 the absorption takes place only at ~ω > 2∆. The graph of this function is shown
in Fig. 18.5.



372 CHAPTER 18. MICROSCOPIC THEORY

Figure 18.5: Temperature dependence of sound absorption.

Response to Microwave Field

The quantitative analysis is more difficult. The key results are the follows. At T = 0
the absorption takes place only at ~ω > 2∆ (see Fig. 18.6). At low frequencies and

Figure 18.6: Frequency dependence of microwave absorption at T = 0.

temperatures, kBT, ~ω � ∆(0) we have

ImQ ≈ −4π sinh

(
~ω

2kBT

)
K0

(
~ω

2kBT

)
exp

(
−∆(0)

kBT

)
Note that the condition ~ω = 2∆ corresponds to the frequencies ∼ 1011 − 1012Hz. Con-
sequently, in the optical frequency range the electromagnetic properties of SC and normal
conductors are practically the same.
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Finally, we discuss also the very important limiting case of the vicinity of Tc and small
frequencies

~ω � ∆� kBTc.

In this region

j =

[
− c

4πδ2
+
iωσ

c

]
A.

Remembering that E = −(1/c)Ȧ we see that the second item is just σE and

j = js+jn.

Note that such a two-fluid hydrodynamics is not the case beyond the vicinity of Tc.

Electron Thermal Conductivity

The main electronic contribution to thermal conductivity can be calculated from the
Boltzmann-like equation for quasiparticles 4

∂ε

∂p

∂n

∂r
− ∂ε

∂r

∂n

∂p
= I(n)

where ε(p, r) is the quasiparticle energy. To estimate the scattering rate we assume impu-
rity scattering,

Hint =
∑
k,k′,σ

Vkk′a
†
kσak′σ

where the matrix element Vkk′ depends only on the angle θ = (k̂,k′). After Bogolyubov
transform neglecting creation-annihilation terms we get

Hint =
∑
k,k′,σ

Vkk′α
†
kσαk′σ(ukuk′ − vkvk′).

For elastic scattering ξk = ±ξk′ . For the sign + we get ξk/εk for the coherence factor while
for the sign - this factor vanishes. As a result,

1

τs
=

2π

~

∫
|Vkk′ |2 (1− cos θ)(ukuk′ − vkvk′)2δ(εk − εk′)(dk′) =

=
π

~
g(εF )

(
ξk
εk

)2 ∣∣∣∣dξkdεk

∣∣∣∣ ∫ dΩ

4π
|V (θ)|2 (1− cos θ) =

1

τtr

|ξk|
εk

Now we can do everything:

∂nF
∂r

= − ε
T

∂nF
∂ε
∇T, ∂ε

∂p
=
∂nF
∂ξ

∂ξ

∂p
= v

ξk
εk
, I(n) =

n− nF
τtr

|ξk|
εk

.

4This equation is oversimplified, but appropriate for the problem.
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Finally,

n(1) =
ε

T

∂nF
∂ε

τtr sign ξk v∇T. (18.25)

It is easy to calculate the thermal current

Q =

∫
εp
∂ε

∂p
n(1) (dp) = − neτtr

2mkBT 2

∫ ∞
∆

ε2 dε

cosh2(ε/2kBT )
∇T.

Thus

κ =
neτtrkBT

2m

∫ ∞
∆/kBT

x dx

cosh2(x/2)
.

The graph of this function is shown in Fig. 18.7.

Figure 18.7: Temperature dependence of thermal conductivity.

Thermoelectric Phenomena

For many years it was thought that one cannot observe thermoelectric phenomena because
the drag current of quasiparticles is compensated by the counter flow of supercurrent. Then
it was shown that there are ways to observe the supercurrent and in such a way to study
the thermoelectric effect. It is not so easy to calculate the thermoelectric current because
of some important features of superflow. Here we use a simplified approach.

Assume that the condensate moves as a whole with the velocity vs, the Cooper pair mo-
mentum being ps=2mvs. The motion as a whole means that the supercondicting coupling
should be the case for the momenta p and −p + ps. As a result, instead of the Bogolyubov
transform we get

ap↑ = upαp↑ + vpα
†
−p+ps↓,

ap↓ = u−p+psαp↓ − v−p+psα
†
−p+ps↑.

(we have chosen the subscripts in the second line to fulfill the anti commutation condition{
ap↑, a−p+ps↓

}
= −upvp + upvp = 0.
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Then we make the same procedure as earlier and get

〈H−εN〉 =
∑
p

{
ξ
[
np↑ + |vp|2 (1− np↑ − n−p+ps↓)

]
+

+ξ′
[
n−p+ps↓ + |vp|2 (1− np↑ − n−p+ps↓)

]}
− ∆2

λ
.

Here
∆ = λ

∑
p upvp(1− np↑ − n−p+ps↓),

ξ′ = ξ(−p + ps).
(18.26)

Minimizing the energy, we get

u2
p = u2

−p+ps
=

1

2

[
1 +

ξ + ξ′

2ε

]
,

v2
p = v2

−p+ps
=

1

2

[
1− ξ + ξ′

2ε

]
,

ε =

√
(ξ + ξ′)2

4
+ ∆2.

Consequently, after variation over npσ we obtain the quasiparticle energies

εp↑ = ε+
ξ − ξ′

2
, ε−p+ps↓ = ε− ξ − ξ′

2

In a more symmetric way, it is reasonable to shift the momentum by ps/2. In this case
we can denote ξ± ≡ ξ(p ± ps/2), ξ + ξ′ = 2ξ(p) + ps/4m, ξ − ξ′ = pps/m = 2pvs. At
small ps one can obtain

εp+ps/2↑ = ε0 + pvs, ε−p+ps/2↓ = ε0 − pvs

that means just the Doppler shift of the energy.
One should be careful to calculate the current. We get

j = − e

m

∑
pσ

pa†pσapσ = − e

m

∑
p

p
[
u2
pnp↑ + v2

p(1− n−p+ps↓) + u2
pnp↓ + v2

p(1− n−p+ps↑)
]
.

Then we shift the variables as p→ p + ps/2 and assume ps � ∆/pF to get

j = −2e

m

∑
pσ

(p + ps/2)
[
u2
p+ps/2

np+ps/2,σ + v2
p+ps/2

(1− n−p+ps/2,σ)
]
.

Expanding in terms of pvs we get [nF (ε+ pvs) = nF (ε) + pvs(∂nF/∂ε)]

j = −2evs
∑
p

[
u2
pnF + v2

p(1− nF )
]
− 2e

m

∑
p

p(pvs)

(
∂nF
∂ε

)
− 2e

m

∑
p

pn(1).
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The two first item can be grouped as −ensvs while the last one is the thermoelectric current
of normal excitations. Substituting the expression for n(1) from (18.25) we get

j =− ηs∇T, ηs = − e

εF
κ.

We will come back to this problem later to explain how one can observe this current.

18.8 Problems

18.1. Prove the Eqs. (18.9) and (18.10).
18.2. Prove Eq. (18.18).
18.3. Check Eq. (18.20)



Chapter 19

Ginzburg-Landau Theory

In this chapter we consider a very powerful macroscopic theory which is very useful for
many problems in SC.

19.1 Ginzburg-Landau Equations

Derivation

Let us formulate the theory of SC transition as the one for a general type II transition.
First, one should define the order parameter. As the order parameter it is natural to chose
the wave function of the Bose condensate, Ψ. According to the principles of SC, it is natural
to assume that the ground state corresponds to the total momentum equal to 0, the wave
function being the same for all the Bose particles.

Near the critical temperature, the modulus of the order parameter is small, and one
can expand the thermodynamic potential as

Ωs = Ωn + a|Ψ|2 +
b

2
|Ψ|4 + · · · .

Because we are interested in the vicinity of Tc we can expand the coefficients in power of

τ =
T − Tc
Tc

.

According the definition of Tc, above Tc the stable state corresponds to Ψ = 0, while below
Tc Ψ 6= 0. Thus the coefficient a should change the sign at the transition point:

a = ατ , α > 0.

As a result, we describe the equilibrium values of the order parameter as

Ψ = 0 at T > Tc
|Ψ|2 = −α

b
τ = |Ψ0|2 at T < Tc .

377
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Inserting the equilibrium value if |Ψ0|2 into the expansion and comparing the result with
the known relation for the critical field, we get

Ωs − Ωn =
(ατ)2

2b
=
H2
c

8π
.

Consequently, using the microscopic theory we have

α2

2b
=

4

7ζ(3)

(kBTc)
2mpF

~3
=

4π2

7ζ(3)
g(εF ) (kBTc)

2 .

The most interesting case is the case of external magnetic field. In this case Ψ is coordinate
dependent. Thus we should add both the energy of magnetic field H2/8π and the energy
connected with the inhomogeneity. Near the critical point it is enough to add |∇Ψ|2. Here
we come to the most important point: Cooper pairs are charged particles. Consequently,
because of gauge invariance, only combination

−i~∇+
2e

c
A

is possible. To make a proper dimension we write the corresponding term as

1

4m

∣∣∣∣(−i~∇+
2e

c
A

)
Ψ

∣∣∣∣2 .
Finally, we get∫ (

Ωs − Ω(0)
n

)
dV =

∫
dV

{
ατ |Ψ|2 +

b

2
|Ψ|4 +

1

4m

∣∣∣∣(−i~∇+
2e

c
A

)
Ψ

∣∣∣∣2 +
H2

8π

}
.

Here Ω
(0)
n is the thermodynamic potential of the normal state without magnetic field. To

get the minimum we calculate variation with respect to Ψ∗ :∫
dV
{
ατΨδΨ∗ + b|Ψ|2ΨδΨ∗ +

1

4m

(
−i~∇+

2e

c
A

)
Ψ

(
i~∇+

2e

c
A

)
δΨ∗

}
The item with the ∇δΨ∗ can be integrated by parts. Using the Gauss theorem we get

i~
4m

∫
surface

δΨ∗
(
−i~∇+

2e

c
A

)
Ψ dS +

1

4m

∫
dV δΨ∗

(
−i~∇+

2e

c
A

)2

Ψ.

Then we put δΨ∗ = 0 at the surface and arbitrary inside. As a result, we get the following
equation for the order parameter

1

4m

(
−i~∇+

2e

c
A

)2

Ψ + ατΨ + b|Ψ|2Ψ = 0.
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If now we put δΨ∗ at the surface to be arbitrary, we obtain the boundary condition

n

(
−i~∇+

2e

c
A

)
Ψ|surface = 0.

The variation with respect to δΨ leads to the complex conjugate expressions.
Now it is important to get the equation for electric current. To obtain it one should

calculate the variation with respect to the vector potential A. The variation of H2 leads
to

δ(curl A)2 = 2 curl A curl δA.

Then we can use the relation

div [a× b] = b curl a− a curl b

to get
δ(curl A)2 = 2δA curl curl A+2div [δA× curl A] .

The second integral can be transformed into the surface one, thus it is not important. On
the other hand, from the Maxwell equations

curl curl A =curl H =
4π

c
j → δ(curlA)2 = 2jδA.

The rest of the free energy can be calculated in a straightforward way, and equating the
total variation to zero we obtain

j =
ie~
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗)− 2e2

mc
|Ψ|2A

This is just the quantum mechanical expression for the current for a particle with the
charge (−2e) and the mass 2m. The set

(1/4m)

(
−i~∇+

2e

c
A

)2

Ψ + ατΨ + b|Ψ|2Ψ = 0,

j = (ie~/2m) (Ψ∗∇Ψ−Ψ∇Ψ∗)− (2e2/mc)|Ψ|2A

forms the Ginzburg-Landau equations.

Dimensionless Parameters and Their Meaning

To make the equations simples new dimensionless parameters are usually introduced:

Ψ′ =
Ψ

Ψ0

, H′ =
H

Hc

√
2
, r′ =

r

δ
, A′ =

A

Hcδ
√

2

with δ =

√
2mc2

4π(2e)2Ψ2
0

, Hc = 2
√
π
ατ√
b
, Ψ2

0 =
α|τ |
b
.
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In the following we will omit primes and use these variables. As a result, the set of equations
can be expressed as (

i

κ
∇−A

)2

Ψ−Ψ + |Ψ|2Ψ = 0 ,

n

(
i

κ
∇−A

)
Ψsurface = 0, boundary condition ,

curl curl A =
i

2κ
(Ψ∗∇Ψ−Ψ∇Ψ∗)− |Ψ|2A . (19.1)

This set contains only one dimensionless parameter

κ = 2
√

2
eHcδ

2

~c
(19.2)

which is called the Ginzburg-Landau (GL) parameter.
To understand the meaning of the parameters let us consider the simplest problem,

namely penetration of a weak field into the superconductor x > 0. Let H ‖ z, A ‖ y, i.e.

H(x) =
dAy
dx

.

It is natural to consider Ψ as a function only of x. We get

− 1

κ2

d2Ψ

dx2
−Ψ + A2|Ψ| = 0,

dΨ

dx
|surf= 0.

At k � 1 one can assume Ψ =const, in the bulk of material it is natural to assume|Ψ|2 = 1,
we chose Ψ real. Immediately we get from the second GL equation

d2A

dx2
− A = 0→ H = H0e

−x, in usual units H = H0e
−x/δ.

Thus δ is just the London penetration depth near Tc. Immediately we get

|Ψ0|2 =
ns
2
→ −α

b
τ =

ns
2
.

Comparing this expression with the microscopic formula for ns obtained in the previous
chapter we get

α

b
= ne.

Then it is possible to express the constants α and b through the microscopic parameters.
Indeed,

α2

2b
=

4π2

7ζ(3)
g(εF ) (kBTc)

2 → α =
8π2ne
7ζ(3)

g(εF ) (kBTc)
2 , b =

α

ne
.
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One can show using these expressions that

κ = a1
δL(0)

ζ0

, a1 =

√
24

7ζ(3)

γ

π
≈ 0.96.

Thus we determined the meaning of all the parameters. The last thing is to discuss the
physics of the order parameter. It is clear that Ψ ∝ ∆ (both are proportional to

√
|τ |).

Computing the coefficients at τ → 0 we obtain

Ψ(r) = a2
1
√
ne

∆(r)

kBTc
, a2 =

1

π

√
7ζ(3)

8
.

Modification for SC Alloys.

As we have discussed, impurities change strongly the penetration depth δ. To take this
change into account we substitute the expression for the penetration depth for dirty SC
into Eq. (19.2). According to exact theory, at `� ζ0

δ(T ) = δL(0)

√
~

∆τtr tanh(∆/2kBT )
. ∼ δL(0)

√
ζ

`
.

At the same time, let us take into account that the coherence length ζ can be expressed
as the electron path during the time ~/∆ : ζ ∼ ~vF/∆. If the electron moves diffusely
ddue to impurity scattering, the coherence length can be expressed as the characteristic
electron path during the time ~/∆ :

ζeff ∼
√
D

~
∆
∼
√
v2
F τtr

~
∆
∼
√
ζ`

where D is the electron diffusion coefficient. Thus

κ ∼ δ

ζeff
∼ δL(0)

`

(the exact theory leads to the coefficient 0.72 in this formula). Note that in this case the
coefficient

1

4mκ2
∼ `2

4mδ2
L(0)

∼ 3D

4pF δ2
L(0)

.

Thus one can express the GL equation for alloys in the form

πD~
8kBTc

(
∇+

2ie

~c
A

)2

∆ +
Tc − T
Tc

∆− 7ζ(3)

8π2

|∆|2

(kBTc)
2 ∆ = 0

and the current is expressed in the form

j =
ieg(εF )D

4kBTc

[
1

2
(∆∗∇∆−∆∇∆∗) +

2ie

~c
|∆|2A

]
.
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Finally, we will derive an auxiliary expression for the free energy which will be used
below. Using dimensionless notations we get∫ (

Ωs − Ω(0)
n

)
dV =

H2
c

4π

∫
dV

{
−|Ψ|2 +

|Ψ|4

2
+

∣∣∣∣(i∇κ −A

)
Ψ

∣∣∣∣2 +H2

}
.

Then we integrate the item with ∇Ψ∗ by parts, the surface integral being zero. In the rest
integral we take into account that Ψ obeys the GL equation. As a result,∫ (

Ωs − Ω(0)
n

)
dV =

H2
c

4π

∫
dV
[
H2 − |Ψ|

4

2

]
.

If one keeps the external field H0 fixed the corresponding thermodynamic potential can be
obtained by subtracting H0B/4π. In a normal phase, correspondingly ΩnH = Ω

(0)
n −H2

0/8π.
As a result, ∫

(ΩsH − ΩnH) dV =
H2
c

4π

∫
dV
[
(H −H0)2 − |Ψ|

4

2

]
. (19.3)

Range of Applicability for the GL Theory.

As we have mentioned, one of the conditions is the vicinity of the transition, |τ | � 1.
Another condition is the local relation between the current and vector potential, δ � ζ0. In
fact, it is possible to combine these equations taking into account that δ(T ) ∼ δL(0)|τ |−1/2.
The criterion reads as

|τ | � min(κ2, 1).

In fact, the theory works not so bad even beyond the vicinity of Tc.

There is another limitation of the range of GL theory: at very small|τ | where fluctua-
tions become important and the self consistent approach becomes invalid. This limitation
is not important for bulk materials but may be very important for layered and low dimen-
sional SC.

19.2 Applications of the GL Theory

Surface Energy at N-S Interface

Consider the problem where all the quantities depend only upon one co-ordinate, say x,
while A ⊥ x. The set of equations has the form (we’ll see that Ψ is real)

κ−2(d2Ψ/dx2) + Ψ(1− A2)−Ψ3 = 0,

(dΨ/dx)|surface = 0,

d2A/dx2 −Ψ2A = 0.
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It is easy to find the integral of this set. Let us multiply the first equation by dΨ/dx, the
last one - by dA/dx and them add the equation and integrate over x :∫ x

0

dx

[
1

κ2

d2Ψ

dx2

dΨ

dx
+ Ψ

dΨ

dx
(1− A2)− dΨ

dx
Ψ3 +

d2A

dx2

dA

dx
−Ψ2A

dA

dx

]
= 0.

We obtain
1

κ2

(
dΨ

dx

)2

+ Ψ2(1− A2)− Ψ4

2
+

(
dA

dx

)2

= const =
1

2

(the constant being determined from the boundary conditions.
To find the surface energy we formulate the boundary conditions

x→∞ (superconductor) : Ψ = 1, H = A = 0, dΨ/dx = 0,

x→ −∞ (normal conductor) : Ψ = 0, H = H0 = 1/
√

2, dΨ/dx = 0.

At κ� 1 (ζ � δ) the most important region where A and H are small. Thus, we get

1

κ2

(
dΨ

dx

)2

+ Ψ2 − Ψ4

2
=

1

2
→ dΨ

dx
=

κ√
2

(1−Ψ2).

The solution is

Ψ = tanh
κx√

2
,

it is wrong in the region where the field penetrates, but this region is small. Now we can
employ Eq. (19.3) and put H0 = 1/

√
2, H = 0. We obtain

σns =
H2
c

8π

∫ [
1− tanh2 κx√

2

]
dx =

H2
c

8π

4
√

2

3κ
.

In dimensional units that means

σns =
4
√

2

3

H2
c

8π

δ

κ
.

The opposite limiting case can be treated only numerically. The result is that σns at
κ = 1/

√
2 and at κ > 1/

√
2 it is negative. The order-of magnitude estimate has been

made earlier.

Quantization of Magnetic Flux.

Consider a hollow cylinder placed into a longitudinal magnetic field. Assume that the
cylinder is in the Meissner state. If the order parameter has the form

Ψ = |Ψ|eiχ
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the current is

j = −e~
m
|Ψ|2

[
∇χ+

2e

~c
A

]
.

We can divide the current density by |Ψ| and integrate over a closed circuit in the bulk of
superconductor: ∮

j

|Ψ|2
dl︸ ︷︷ ︸ = − e~

m

∮ ∇χdl︸ ︷︷ ︸+2e
~c

∮
A dl︸ ︷︷ ︸

 .
0 − 2πk flux

Thus

Φ = kΦ0, Φ0 = π~c/e = 2.07 · 10−7G · cm2.

It is interesting that the effect has been predicted by F. London (1950) before the concept
of Cooper pairs. He assumed the quantum to be π~c/e = 2Φ0.

In any case the quantized quantity is in fact fluxoid∮
∇χdl

which is equal to the total flux through the hole and the surface layer. As a result, the
flux quantization through the hole is not exact.

Experimentally, the SC is cooled in a fixed magnetic field and the flux is frozen inside
the hole. To determine the trapped flux one should minimize the free energy difference∫

(ΩsH − ΩnH) dV =

H2
c

4π

(Hint −H0)2 πR2
1︸ ︷︷ ︸+

∫ R2

R1

[
(H −H0)2 − |Ψ|

4

2

]
2πρ dρ︸ ︷︷ ︸

 .

hole SC walls

Here R1,2 are internal (external) radius of the SC pipe. The second term is not important
for a macroscopic pipe (R2 −R1 � ∆) and one should find Hint to minimize the previous
expression under the quantization condition. It is clear to understand that the internal
magnetic flux is equal to

Φ = nΦ0 at

(
n− 1

2

)
Φ0 < Φext <

(
n+

1

2

)
Φ0

(see Fig. 19.1).
This kind of behavior has been demonstrated in a very interesting experiments by

Little and Parks (1962). Let us make the hollow cylinder from a very thin film with the
thickness� δ. Such s film does not screen the magnetic field. If the film radius is� δ one
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Figure 19.1: Quantization of magnetic flux through a SC cylinder.

can consider the vector potential to be constant in the film. We can come to cylindric co-
ordinates and assume that the only component of A as Aϕ. Expressing the order parameter
as Ψeiχ we have∫ (

Ωs − Ω(0)
n

)
dV =

∫
dV

{
ατ |Ψ|2 +

b

2
|Ψ|4 +

1

4m

∣∣∣∣(−i~∇+
2e

c
A

)
Ψ

∣∣∣∣2 +
H2

8π

}
→

Ωs − Ω(0)
n = ατ |Ψ|2 +

b

2
|Ψ|4 +

~2

4m

(
∇χ+

2e

~c
A

)2

+
H2

8π
. (19.4)

In our case |Ψ| =const, as well as the quantities ∇χ and A are constant along the film. So
we can replace the gauge-invariant difference ∇χ+ 2e

~cA by its average value

∇χ+
2e

~c
A =

1

2πR

∮ (
∇χ+

2e

~c
A

)
dl =

1

R

(
n− Φ

Φ0

)
.

Now we can substitute this expression into (19.4) to get

Ωs − Ω(0)
n = ατ |Ψ|2 +

b

2
|Ψ|4 +

~2

4mR2

(
n− Φ

Φ0

)2

|Ψ|2 +
H2

8π
,

the number n is within the interval(
n− 1

2

)
Φ0 < Φext <

(
n+

1

2

)
Φ.

We see that the magnetic field leads to the renormalization of the critical temperature

τ → τ ′ = τ +
~2

4mR2α

(
n− Φ

Φ0

)2

or
δTc
Tc

= − ~2

4mR2α

(
n− Φ

Φ0

)2

.
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Figure 19.2: On the experiments by Little and Parks.

The graph of the experimental dependence is shown in Fig. 19.2. Note that to observe
the change of magnetic flux in a SC cylinder with thick walls one should wait several years
because the life time of the metastable state with ”wrong2” numbers of quanta is very
long. The key feature of the experiment discussed is the thin walls of the cylinder.

Thermoelectric Phenomena

Now we can discuss how to observe the thermoelectric effects we’ve considered earlier. For
this reason we write the supercurrent as

j = jT + js, jT = −ηs∇T, js = −~ens
2m

(
∇χ+

2e

~c
A

)
(we have substituted |Ψ|2 = ns/2. Now consider a cylindric system shown in Fig. 19.3, the
branches a and b being fabricated from different materials. In the bulk of materials j =0,

Figure 19.3: On the thermoelectric effect.

and

∇χ =
2mηs
~ens

∇T − 2e

~c
A.



19.2. APPLICATIONS OF THE GL THEORY 387

Integrating over the closed loop we get

2πn =
2m

~e

∮
ηs
ns
∇T dl−2e

~c

∮
ηs
ns

A dl =

=
2m

~e

∫ T2

T1

[(
ηs
ns

)
a

−
(
ηs
ns

)
b

]
dT − 2π

Φ

Φ0

.

As a result,
Φ

Φ0

= −n+
m

π~e

∫ T2

T1

[(
ηs
ns

)
a

−
(
ηs
ns

)
b

]
dT.

We see that there is non-quantized contribution to the magnetic flux. This contribution is
small but observable.

Surface Superconductivity

Now we discuss the surface superconductivity. To start let us discuss stability of the SC
region in the normal phase. We have different possibilities (see Fig. 19.4 where the order
parameter is shown). For all the cases one should use the boundary condition

Figure 19.4: On the surface supercondutivity.

(
dΨ

dx

)
surface

= 0.

Assume that the field is parallel to the surface. We chose

A = H(x− x0)

where x0 is the parameter. The GL equation has the form

−d
2Ψ

dx2
+ κ2H2

0 (x− x0)2Ψ = κ2Ψ
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It is convenient to transform the equation to dimensionless variable x′ = x
√
κH0, and we

have
−Ψ′′ + (x′ − x′0)2Ψ =

κ

H0

Ψ.

This equation has 2 parameters: β = κ/H0, and x′0 = x0

√
κH0. There is an exact solution

of this equation that can be expressed in terms of hyper geometric function. It has the
form

Ψ = e−x
′2/2

{
C1F

[
1− β

4
,
1

2
, (x′ − x′0)2

]
+ C2x

′F

[
3− β

4
,
3

2
, (x′ − x′0)2

]}
where F (α, γ, z) obeys the equation

zF ′′ + (γ − z)F − αF = 0.

We can find the ratio C1/C2 and β from the boundary conditions at the surface and at
infinity (they can be expressed as the function of x′0. Then one can minimize β with respect
to x′0, the quantity βmin corresponds to H0 max. The result is

Hc3 = 1.69κ = 1.695Hc2.

19.3 N-S Boundary

Proximity Effect

In this section we briefly discuss important physics for the N-S boundary. To make the
discussion as simple as possible we discuss the case of the temperature close to Tc, so we
can use the GL theory.

The most important feature that one should modify the boundary condition for the
order parameter. It has the form

n

[
∇+

2ie

c~
A

]
Ψ

∣∣∣∣surface =
1

µ
Ψ

∣∣∣∣
surface

. (19.5)

To calculate µ one needs the microscopic theory but it is clear that µ ∼ ζ. The exact result
is

µ =

{
0.6ζ0, pureSC

0.3
√
ζ0`,

′′dirty′′SC.

Let us consider the plain surface x = 0. The integral of the GL equation at A = 0 is

ζ2

(
dΨ

dx

)2

+ Ψ2 − Ψ4

2
=

1

2
.

The length ζ is just the coherence length . We know the solution

Ψ = tanh

(
x− x0

ζ
√

2

)
,
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the parameter x0 is to be determined from the boundary condition (19.5)

sinh

(
x0

√
2

ζ

)
= −2

µ

ζ
.

Near Tc ζ ∝ 1/
√
Tc − T and x0 ≈ −µ

√
2. Thus

Ψ = tanh

(
x

ζ
√

2
+ 1

)
.

That means that the order parameter is non-zero also in the thin layer of former normal
phase. At the same time, normal conductor ”spoils the superconductivity near the surface.

Andreev Reflection

Let us discuss the N-S boundary in more detail. At the interface the chemical potentials
in both phases should be equal. At the same time, in the SC the electrons exist as Cooper
pairs. As a result, the chemical potential of the pair of electrons should be the same as the
chemical potential of a Cooper pair.

Now let one electron come to the SC. It has no partner, and consequently its energy is
greater by ∆. Consequently, if the excitation energy of the electron above the Fermi level
is less than ∆ it should be reflected from the boundary.

To discuss the physical picture in more detail let us assume that metal s are the same
(say, we discuss the N-S boundary in the intermediate state). In this case the order
parameter penetrates into the normal phase up to the thickness ∼ ζ ≈ ~vF/∆. The energy
spectrum ε =

√
ξ2 + ∆2 is shown in Fig. 19.5. As we have discussed, the quasiparticle

Figure 19.5: Quasiparticle spectrum near the surface.

from the normal metal (left panel) is reflected, its energy being conserved. At the same
time, the momentum change can be estimated as follows: δp ∼ (dp/dt)δt where δt is the
time to be inside SC: δt ∼ ζ/vF . The derivative

dp/dt ∼ −dU/dx ∼ ∆/ζ.
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Thus
δp ∼ (∆/ζ)(ζ/vF ) ∼ pF (∆/εF )� pF .

The only way to meet these conditions is to make inter-branch transition (from particle-like
to antiparticle-like branch and vice versa). We see that both energy and momentum are
almost the same. At the same time, the group velocity will have an opposite direction.
Actually the process is

particle→ anti− particle, ε1 = ε2, p1 ≈ p2, v1 = −v2.

Such a process is called the Andreev reflection (Andreev, 1964).
What happens with the charge? In fact, such a reflection is assisted with the creation

of a Cooper pair in the SC region which carries the charge.
This is the mechanism for charge transfer from normal conductor to SC.

Andreev reflection is very important for many effects in superconductors.



Chapter 20

Tunnel Junction. Josephson Effect.

20.1 One-Particle Tunnel Current

Tunneling is the famous problem of quantum mechanics. It is important that a quantum
particle can penetrate the barrier with the energy less than the barrier height. The tunnel
transparency, up to the main approximation, is given by the formula

W ∼ exp

[
−2

~

∫
Im px dx

]
= exp

[
−2
√

2m

~

∫ x2

x1

√
U(x)− E dx

]
(20.1)

(see Fig. 20.1).

Figure 20.1: Quantum tunneling.

We start with the case of two normal metals. In the equilibrium their chemical poten-
tials are equal. At a fixed bias, all the voltage is dropped across the barrier (the resistance
being maximal), so the difference of the electro-chemical potentials is −eV (Fig. 20.2).
We see that the number of the electron which can penetrate the barrier is proportional to
eV , and we get the Ohm’s law (Fig. 20.3, curve 1).

391
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Figure 20.2: Tunnel junction at a given bias.

Figure 20.3: I−V -curves for normal conductors (1), one-electron (2), and two-electron (3)
tunneling.

Now let us discuss the N-S case at T = 0. In a SC the electrons form Cooper pairs,
their chemical potentials are just the same as the energy level of the Bose condensate. In
a normal conductor, we have two free quasi-particles at the Fermi level.

Let us suppose that 1 electron made the N→S transition through the junction. In a SC
its energy is greater by ∆ than the energy of an electron inside the Cooper pair. Thus, an
extra energy should be given to the electron. Energy cost for the reverse transition is just
the same because one should destroy the Cooper pair, the energy per electron being ∆.

Why the electron pairs cannot tunnel as a whole? The total charge transferred is −2e
that doubles U(x) in Eq. (20.1), while the mass is 2m that leads to the extra

√
2.We see

that the probability decreases drastically.

To understand the situation let us look at Fig. 20.4. This is the so-called quasi-particle
scheme, and we see that the cost is ∆. Consequently, there is a threshold at eV = ∆.

To calculate the current one needs the densities of states: gn = g(εF ) for the normal
metal and

gs(ε) = gn
ε√

ε2 −∆2
, ε > ∆.
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Figure 20.4: Energy diagram for N-S tunneling (S – left side, N – right side of each panel).

This is real density of states. To use the scheme depicted in Fig. 20.4 we should assume
both signs of ε. So we define

gs(ε) =

{
gn|ε|/

√
ε2 −∆2, |ε| > ∆

0, |ε| < ∆
.

Here positive ε corresponds to N→S tunnel transitions while ε < 0 corresponds to destruc-
tion of Cooper pairs assisted by S→N transitions.

The current is given by the golden rule formula

j ∝
∫
dεW g1(ε− eV )g2(ε) ×

×{n1(ε− eV ) [1− n2(ε)]− n2(ε) [1− n1(ε− eV )]} =

=

∫
dεW g1(ε− eV )g2(ε) [n1(ε− eV )− n2(ε)] ≈

≈ W g1ng2n

∫
dε

|ε− eV |√
(ε− eV )2 −∆2

[n1(ε− eV )− n2(ε)] .

At zero temperature, n(ε) = Θ(ε) and we get

j ∝ W g1ng2n

∫ eV−∆

0

dε
|ε− eV |√

(ε− eV )2 −∆2

= W g1ng2n

√
(eV )2 −∆2.

One can easily obtain the coefficient taking into account that at eV � ∆ the result should
be the same as for N-N system. Thus

j

jn
=

√
(eV )2 −∆2

eV
.
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Now let us discuss the S-S junction. We have

j ∝ W g2
1n

∫ eV−∆

∆

dε
eV − ε√

(ε− eV )2 −∆2

ε√
ε2 −∆2

.

We see that threshold value is eV = 2∆, the result being

j

jn
= E


√

(eV )2 − (2∆)2

eV

− 2

(
∆

eV

)2

K


√

(eV )2 − (2∆)2

eV


where E, K are the elliptic integrals

K(k) =

∫ π/2

0

(1− k2 sin2 ϕ)−1/2 dϕ ,

E(k) =

∫ π/2

0

(1− k2 sin2 ϕ)1/2 dϕ .

At eV = 2∆ j/jn = π/4 (see Fig. 20.3, curve 3).
At final temperatures, the threshold singularity is smeared, nevertheless even a finite

temperatures it is convenient to measure the dependence ∆(T ) from the derivative ∂j/∂V.
It is interesting to consider the case of 2 different superconductors with Tc2 > Tc1 ≥ T.

At low temperatures the singularity takes place at

eV = ∆1 + ∆2.

To see what happens at finite temperatures let us look at Fig. 20.5 (left panel) where the
density of states are plotted. At the increase of voltage the left side of the picture moves

Figure 20.5: S-S tunnelling. Left – Energy diagram, right – I − V -curve.
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up and the current increases because of the increase of the thermally excited states which
can tunnel into the free states in the right side. Then, when eV ≥ (∆2 −∆1), the number
of free states decreases with the voltage increase. Consequently, the current decreases. The
situation changes at eV = (∆2 + ∆1) where the upper limit of the left lower band coincides
with the lower limit of the right upper band. The I − V -curve is shown in Fig. 20.5 (right
panel).

Tunneling experiments appear extremely informative to study properties of SC.

20.2 Josephson Effect

Up to now, we have considered incoherent processes. Actually, the complete theory should
take into account coherent transfer of the electron wave function. As a result, the order
parameters overlap, and there is a possibility to form a united condensate. As a result, a
finite supercurrent can flow through S-I-S system almost like through a bulk SC (Josephson,
1962).

Let us calculate the Josephson current in a very simple way. Namely, let us find the
contribution of the coupling to the energy up to the lowest order. The simplest expression

E = C

∫
dy dz (∆1∆∗2 + ∆∗1∆2) = 2C

∫
dy dz |∆1∆2| cos(χ2 − χ1).

Here C is a constant, (y, z) is the plane of the contact.
Why the phase difference is dependent on (χ2−χ1)? Let us consider the magnetic field

H ‖ (yz). According to the gauge invariance, all the physical quantities depend on

∇χ+
2e

~c
A.

Now we can chose A ‖ x and integrate the relation along x between the points 1 and 2
which are placed inside the left (and right) SC parts. We get

χ2 − χ1 +
2e

~c

∫ 2

1

Ax dx.

Thus,

E = 2C

∫
dy dz |∆1∆2| cos

(
χ2 − χ1 +

2e

~c

∫ 2

1

Ax dx

)
.

After variation with respect to Ax is

δE = −4e

~c
C

∫
|∆1∆2| sin

(
χ2 − χ1 +

2e

~c

∫ 2

1

Ax dx

)
δAx dV .

Comparing this equation with the general formula of electrodynamics

δE = −1

c

∫
jδA dV
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we obtain

j =
4e

~
C|∆1∆2| sin

(
χ2 − χ1 +

2e

~c

∫ 2

1

Ax dx

)
= jc sin

(
χ2 − χ1 +

2e

~c

∫ 2

1

Ax dx

)
.

In particular, in the absence of magnetic field,

j = jc sin (χ2 − χ1) .

Thus the phase difference is connected with the supercurrent.
It is clear that the critical current is proportional to the tunneling probability. At the

same time, the normal conductance R−1 is also proportional to the tunneling probability.
The microscopic formula for two identical SC at T = 0 (Ambegaokar, Baratoff, 1963) is

jc =
π∆(0)

2eR

while at finite temperature

jc =
π∆(T )

2eR
tanh

(
∆(T )

kBT

)
.

Experimentally, jc ∼ 103 − 104 A/cm2 that is 5-6 orders less than the critical current
in a bulk sample. Consequently, Josephson effect and related topics are called the weak
superconductivity. Actually, the current is tuned by the ballast resistor and the transition
from zero voltage to the finite one is observed. In fact, this transition is assisted by many
interesting nonlinear phenomena (see e.g. Problem 20.1).

Josephson Effect in a Weak Link

It is important that the analogs of the Josephson effect can take place not only in S-I-S
systems but in any king of inhomogeneous structures with the part where superconductivity
is suppressed. Among such systems are

S− I− S (SC− insulator− SC, tunneljunction)
S− N− S (SC− normalconductor− SC, proximitybridge)
S− C− S (SC− constriction− SC, bridge or point contact)

To explain the reason we discuss here a very simple derivation based on the GL theory.
Consider the GL equation

− 1

κ2
∇2Ψ−Ψ + |Ψ|2Ψ = 0

and suppose that the length L of the bridge is much less than ζ (in our units L/δ � κ−1).
In this case, inside the bridge the first item is the most important, and we have in the
lowest approximation

∇2Ψ = 0.
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In the bulk of the ”banks” Ψ→const. Let us assume that

const = eiχ1 , in the left side
const = eiχ2 , in the right side

.

Thus we can search the solution of the GL equation as

Ψ = f(r)eiχ1 + [1− f(r)] eiχ2 (20.2)

where f(r)obeys the equation

∇2f(r) = 0

and tends to 1 in the bank 1 and to 0 in the bank 2. We will not discuss the exact form of
the solution which depends on the concrete system. Rather we substitute Eq. (20.2) into
the expression for the super-current and transform it to dimensional units. The result is

j =
2~
m

Ψ2
0∇f(r︸ ︷︷ ︸) sin(χ2 − χ1)

critical current

.

20.3 Josephson Effect in a Magnetic Field

Narrow Junction

Suppose that there is an external magnetic field H ‖ y (the junction plane is yz one). The
field can be described by the vector potential

Ax = Hy(x)z

We also neglect the field created by the current. In this case∫ 2

1

Ax dx = Hy0 zd, where d = 2δ(T ) + d′ ≈ 2δ(T ),

d′ is the thickness of the insulating region (we have taken into account that the field decays
as exp(−x/δ) in SC regions). As a result, we have

j = jc sin

[
χ1 − χ2 − 2

eH

c~
zd

]
.

The experimentally measurable quantity is the average current,

j̄ = 1
L

∫ L
0
j(z) dz = jc

c~
2eHLd︸︷︷︸ {cos

[
χ1 − χ2 − 2 eH

c~ Ld
]
− cos (χ1 − χ2)

}
.

flux through the contact
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Denoting θ0 = χ1 − χ2 we get

j̄ =
jc
π

Φ

Φ0

sin

(
π

Φ

Φ0

)
︸ ︷︷ ︸ sin

(
θ0 + π Φ

Φ0

)
jcmax−maximal critical current

As a result, the maximal critical current is

jcmax = jc

∣∣∣∣sin (πΦ/Φ0)

πΦ/Φ0

∣∣∣∣ .
The graph of this function is shown in Fig. 20.6.

Figure 20.6: Josephson effect in a magnetic field.

Wide Junction

One can neglect the field produced by the own current only if the width of the junction is
small. In a wide junction the field becomes z-dependent due to the field produced by the
transport current. To take this dependence into account we denote

χ2 − χ1 +
2e

~c

∫ 2

1

Ax dx ≡ θ(z)

and write

θ(z + dz)− θ(z) =
2e

c~
dHy(z) dz =

2π

Φ0

dHy(z) dz.

Thus

Hy(z) =
Φ0

2πd

dθ

dz
.

On the other hand, from the Maxwell equation

j =
c

4π

dHy

dz
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while according to the Josephson relation

j = jc sin θ.

As a result, we come to the equation

jc sin θ =
c

4π

dHy

dz
=

cΦ0

8π2d

d2θ

dz2
→

d2θ

dz2
=

1

δ2
J

sin θ. (20.3)

This is the Ferrell-Prange equation. Here

δJ =

√
cΦ0

8π2djc

is the so-called Josephson penetration depth.
To understand the situation let us consider the case of weak magnetic field with no

transport current. In this case we can replace sin θ → θ, and the solution is

θ = θ0e
−z/δJ → H = H0e

−z/δJ .

For jc ∼ 102 A/cm2 δJ ∼ 10−2 cm � δL.. Thus the junction can be considered as narrow
if

L� δJ .

In wide junctions we come to a very interesting picture – the junction behaves as 2D
superconductor with the specific Meissner effect. The current distribution is shown in Fig.
20.7, left panel.

Figure 20.7: Josephson effect in a wide junction. Left panel - weak magnetic field, right
panel - strong magnetic field.
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In a strong enough field we return to Eq. (20.3) multiply it by dθ/dz and integrate
over z. As a result, we get the integral(

dθ

dz

)2

= − 2

δ2
J

cos θ + C.

The solution can be written as

z − z0 =

∫ θ

π

dθ1√
C − 2δ−2

J cos θ1

.

To study the structure of the magnetic field we discuss the solution of the soliton type with
the boundary condition

dθ

dz
→ 0 at z → ±∞.

To find the constants C note that

dθ

dz
=

 d

dθ

∫ θ

π

dθ1√
C − 2δ−2

J cos θ1

−1

=
√
C − 2δ−2

J cos θ

We can get the solution assuming that θ → 0 at z → −∞ and θ → 2π at z→ ∞ We get
C = 2δ−2

J and

θ(z) = 4 arctan

[
exp

(
z − z0

δL

)]
.

The distribution of current is shown in Fig 20.7, right panel, while the graphs of the phase,
field and current are shown in Fig. 20.8.

In general, there is a chain of vortexes. The magnetic flux in each one is

Φ = d

∫ ∞
−∞

H dz =
Φ0

2πd
d [θ(∞)− θ(0)] = Φ0.

Thus we come to the picture similar to the type II SC. One can show that the analog of
the field Hc1 is

Hc1 =
2Φ0

π2dδJ
.

The important difference that the Josephson vortexes have no normal core. Consequently,
there is no upper critical field Hc2. At high field vortexes overlap and the field is almost
uniform.

Superconductor Interferometers

Let us discuss the principle of a very important application of quantum interference in
superconductors. Consider a system show in Fig. 20.9. . The total current through the
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Figure 20.8: Josephson effect in a wide junction. Distributions of phase, current, and
field.

external circuit is
I = Ic1 sin θ1 + Ic2 sin θ2.

If magnetic field is directed perpendicular to the loop’s plane, the phase of the order
parameter in the bulk of material is

∇χ =
2e

~c
A (current is absent, j =0).

Integrating along the dashed line we get for the total phase variation:

θ1 − θ2 +
2e

~c
Φ = 2πn→ θ1 − θ2 + 2π

Φ

Φ0

= 2πn.

Consequently, we can denote

θ1 = θ − π Φ

Φ0

+ 2πn, θ2 = θ + π
Φ

Φ0

.

If the field is weak enough in order not to affect upon the currents Ic1, Ic2 we have

I = Ic1 sin

(
θ − π Φ

Φ0

)
+ Ic2 sin

(
θ + π

Φ

Φ0

)
.

The result has the simplest form at Ic1 = Ic2 = Ic :

I = Ieffc sin θ, Ieffc = 2Ic cos

(
π

Φ

Φ0

)
.

We see that the critical current of the interferometer oscillates with the external magnetic
field.

We have described only one possible scheme of a SQUID (Superconductor Quantum
Interference Device). In fact, SQUIDs are very important for applications and there are
different schemes to use them.
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Figure 20.9: Superconductor interferometer.

20.4 Non-Stationary Josephson Effect

According to the gauge invariance, the electric potential enters all the equations in a
combination

2eϕ+ ~
∂χ

∂t
.

It means that the phase acquires the additional factor

2e

~

∫ t

ϕ(t′) dt′

or
∂θ

∂t
=

2e

~
V.

This is the so-called not-stationary Josephson effect. Thus, if the voltage V at the junction
kept constant

j = jc sin [θ0 + ωJt] , ωj =
2e

~
V

(for V = 10−4 V ωJ ∼ 1011 s−1). Usually, the voltage is never kept constant. Rather a
series circuit is constructed with a battery and a load tunable resistor. In this case an
interesting and complicated picture can be observed (see Problem 20.1).

It is important that at finite temperature in the presence of voltage the one-particle
tunneling is present, the normal current being V/R = (~/2eR) ∂θ/∂t. Thus

j = jc sin θ + (~/2eR) ∂θ/∂t.

According to the Josephson formula,

dθ

dt
=

2e

~
V =

2e

~
(U − JcR sin θ) = ωJ(1− λ sin θ), λ =

JcR

U
.
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As a result

ωj(t− t0) =

∫
dθ

1− λ sin θ

At λ > 1 there is a pole in the integrand at θ0 = arcsin(1/λ). Thus at t→∞ θ → θ0, the
current being U/R while the voltage at the junction is zero. At λ > 1 (or J > Jc) one can
calculate the integral exactly: assuming m = tan(θ/2) we get

m = λ+
√

1− λ2 tan

[
1

2

√
1− λ2ωJ(t− t0)

]
The current being

I =
2cm

1 +m2
.

We see that the current oscillates with the period 2π/ω = 2π/ωJ
√

1− λ2.

Having in mind that V = (~/2e)(∂θ ∂t) we obtain

V (t) = R
j(j2 − j2

c )

j2 + j2
c cosωt+ jc

√
j2 − j2

c sinωt
, ω =

2eR

~
√
j2 − j2

c .

One can show that the time average is equal to

V (t) =
1

2π

∫ 2π

0

d(ωt)V (t) =
~ω
2e
.

This property is employed in metrology.

Another important property is the reaction of the Josephson junction to the external
a.c. field. Suppose that one modulates the voltage as

V (t) = V0 + v cos Ωt.

We obtain

θ(t) =
2e

~

[
V0t+ θ0 +

v

Ω
sin Ωt

]
,

j

jc
= sin θ(t) = sin

[
2e

~
(V0t+ θ0)

]
cos

[
2eV

~Ω
sin Ωt

]
+ cos

[
2e

~
(V0t+ θ0)

]
sin

[
2eV

~Ω
sin Ωt

]
.

Then, one should remember that

cos(a sin Ωt) =
∞∑
−∞

J2k(a)ei2kΩt = 2
∞∑
0

J2k(a) cos 2kΩt ,

sin(a sin Ωt) =
∞∑
−∞

J2k+1(a)ei(2k+1)Ωt = 2
∞∑
1

J2k−1(a) sin (2k − 1) Ωt .
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Consequently we can plug in these series into the previous equation denoting a ≡ 2eV/~Ω.
Now, we can recall that

2 sin

[
2e

~
(V0t+ θ0)

]
cos 2kΩt = sin

[(
2eV0

~
+ 2kΩ

)
t+ θ0

]
+ sin

[(
2eV0

~
− 2kΩ

)
t+ θ0

]
,

2 cos

[
2e

~
(V0t+ θ0)

]
sin (2k − 1) Ωt = sin

[(
2eV0

~
+ (2k − 1) Ω

)
t+ θ0

]
− sin

[(
2eV0

~
− (2k − 1) Ω

)
t+ θ0

]
.

We see that at
2eV

~
= nΩ

a time-independent item appears, the amplitude being

jn = (−1)nJn(2ev/~Ω) sin θ0.

Thus we get resonant additional contributions to the current.
Such a formulation does not coincide with the experiment where usually the current is

kept constant. To describe the situation one should solve the corresponding problem which
is more difficult mathematically but is not too difficult qualitatively. As a result, the steps
at the current-voltage curves appear (Shapira steps, Fig. 20.10).

Figure 20.10: Shapira steps. Different curves are measured for different amplitudes of
microwave and shifted along the x-axis.

Registration of the steps is one way to construct Josephson detectors for microwave
fields.
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20.5 Wave in Josephson Junctions

Josephson waves

Suppose that we place a Josephson junction in a magnetic field and keep a given potential
difference. In this case,

j = jc sin [θ0 + (2eV/~)t+ (2eHd/~c)z] . (20.4)

This is just the wave propagating along z axis, the wave vector being k = 2eHd/~c, and
the phase velocity being

v0 = ω/k = cV/Hd . (20.5)

Swihart waves

Do not forget that the junction has a finite capacitance, and the current has a contribution

∂Q

∂t
= C

∂V

∂t
=
C~
2e

∂2θ

∂t2
.

Thus

j = jc sin θ +
~

2eR

∂θ

∂t
+
C~
2e

∂2θ

∂t2
. (20.6)

If we substitute this expression to the Maxwell equation

j =
c

4π

dH

dz
, H(z) =

Φ0

2πd

dθ

dz

we obtain nonlinear wave equation

∂2θ

∂z2
− 1

c2
0

∂2θ

∂t2
− γ

c2
0

∂θ

∂t
=

1

δ2
J

sin θ . (20.7)

Here

c0 =

√
ec

4π2dC~Φ0

= c

√
d′

κd
, d′ =

κ

4πC
,

γ =
1

RC

At jc → 0, γ → 0 one obtains eigen modes with velocity c0 � c. These waves are called
the Swihart waves.

In the presence of Josephson current they interact with the Josephson waves. To study
such a coupling let us assume that jc → 0 and iterate the r.h.s. of Eq. (20.7):

θ = θ0 + ωt+ kz + θ1 , θ1 � omegat+ kz .
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In this case we have

∂2θ1

∂z2
− 1

c2
0

∂2θ1

∂t2
− γ

c2
0

∂θ1

∂t
=

1

δ2
J

sin(θ0 + kz + ωt) . (20.8)

From this equation,

θ1 =
c2

0

δ2
J

Im

[
exp[i(θ0 + kz + ωt)]

ω2 − k2c2
0 − iωγ)

]
.

Now we can calculate the average current,

J̄ ≡ lim
T,L→∞

1

T

∫ T

0

dt

∫ L

0

dz j(z, t) .

Expanding the expression as

sin θ(z, t) = cos(θ0 + ωt+ kz) sin(θ1(z, t) + vanishing items

we get

J̄ = jc
ωc2

0γ

2δ2
j

1

(ω2 − c2
0k

2)2 + ω2γ2
.

As a result, one obtains a clear peak (resonance) at

v0 = c0 , → V =
c0

c
Hd .

Note that the criterion of applicability is

j̄ � jc → c2
0

δ2
J

� ωγ .

Usually the current rather than the voltage is kept constant. Then one observes the steps
at the V − I curve.

j (H)
c

Vo ∆2       /e

j

V
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20.6 Problems

20.1. Consider the current in a series circuit containing a Josephson junction, load
resistor, and a battery.
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Chapter 21

Mesoscopic Superconductivity

21.1 Introduction

Recent experiments on conduction between a semiconductor and a superconductor have
revealed a variety of new mesoscopic phenomena. Here is a review of the present status of
this rapidly developing field. A scattering theory is described which leads to a conductance
formula analogous to Landauer’s formula in normal-state conduction. The theory is used
to identify features in the conductance which can serve as “signatures” of phase-coherent
Andreev reflection, i.e. for which the phase coherence of the electrons and the Andreev-
reflected holes is essential. The applications of the theory include a quantum point contact
(conductance quantization in multiples of 4e2/h), a quantum dot (non-Lorentzian conduc-
tance resonance), and quantum interference effects in a disordered normal-superconductor
junction (enhanced weak-localization and reflectionless tunneling through a potential bar-
rier).

Figure 21.1: Normal reflection by an insulator (I) versus Andreev reflection by a supercon-
ductor (S) of an electron excitation in a normal metal (N) near the Fermi level. Normal
reflection (left) conserves charge but does not conserve momentum. Andreev reflection
(right) conserves momentum but does not conserve charge: The electron (e) is reflected as
a hole (h) with the same momentum and opposite velocity. The missing charge of 2e is
absorbed as a Cooper pair by the superconducting condensate.

409
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21.2 Bogoliubov-de Gennes equation

Electrons are subjected to a scalar potential U(r), then the single-electron Hamiltonian is

Ĥ0 =
[p̂ + (e/c)A]2

2m
+ V (r) . (21.1)

where A() is the vector-potential.
One can define eigenfunctions, wn(r)|σ〉, of the operator Ĥ0, where wn(r) describes

orbital motion while |σ〉 is the spin state. There are two solutions corresponding to a given
excitation energy, ξn, measured relatively to the Fermi energy –

wn = wn(r)| ↑〉 and wn̄ = w∗n(r)| ↓〉 .

If electron-electron interaction is present, then these states are not independent any more.
To find the ground state one has to minimize the proper thermodynamic potential which
includes the interaction.

The way suggested by Bogoliubov is the following. Let us construct the so-called field
operators as

Ψ(rα) =
∑
n

wn an , Ψ+(rα) =
∑
n

wn̄ a
+
n . (21.2)

Here α is the spin index. The field operators meet the commutation rules.

Ψ(rα)Ψ(r′β) + Ψ(r′β)Ψ(rα) = 0 ,

Ψ+(rα)Ψ+(r′β) + Ψ+(r′β)Ψ+(rα) = 0 ,

Ψ+(rα)Ψ(r′β) + Ψ(r′β)Ψ+(rα) = δαβ δ(r− r′) . (21.3)

The operator for the particle number is then

N̂ =
∑
α

∫
dr Ψ+(rα)Ψ(rα) , (21.4)

while the Hamiltonian can be expressed as

Ĥ = Ĥ0 + Ĥint

where

Ĥ =
∑
α

∫
dr Ψ+(rα)H0Ψ(rα) ,

Ĥint = −g
2

∑
α

∫
dr Ψ+(rβ)Ψ+(rα)Ψ(rβ)Ψ(rα) . (21.5)

Since we are interested in the thermodynamic potential, we replace

H0 → He = H0 + V (r)− εF
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and the interaction gΨ+Ψ+ΨΨ by the interaction with the mean field ∆(r). Here V (r) is
some effective potential due to electron-electron interaction.

Then we arrive at the effective Hamiltonian,

Ĥeff =

∫
dr

[∑
α

Ψ+(rα)He(r)Ψ(rα)

+ ∆(r)Ψ+(r ↑)Ψ+(r ↓) + ∆∗(r)Ψ(r ↓)Ψ(r ↑)
]
. (21.6)

Let us suppose now that we know ∆(r) and find the energy levels for the effective Hamil-
tonian (21.6). Since it is quadratic in Ψ-operators we can use a unitary transform to
diagonalize it,

Ψ(r ↑) =
∑
n

[γn↑un(r)− γ+
n↓v
∗
n(r)] ,

Ψ(r ↓) =
∑
n

[γn↓un(r) + γ+
n↑v
∗
n(r)] . (21.7)

Here γ is the system of new operators obeying the commutation relations

γ+
nαγmβ + γmβγ

+
nα = δmnδαβ , γnαγmβ + γmβγnα = 0 . (21.8)

The functions u(r) and v(r) are unknown, and we need to derive the equation for it.
Since after the transform (21.7) the effective Hamiltonian must be diagonal, i. e. it

must take the form
Ĥeff = Eg +

∑
nα

εnγ
+
nαγnα ,

the following commutation rules must be met,

[Ĥeff , γnα] = −εnγnα , [Ĥeff , γ
+
nα] = εnγ

+
nα . (21.9)

This equation can be used to determine the functions u and v. Indeed, using Eq. (21.6)
and commutation properties of the field operators we get

[Ψ(r ↑), Ĥeff ] = HeΨ(r ↑) + ∆(r)Ψ+(r ↓) ,
[Ψ(r ↓), Ĥeff ] = −H∗eΨ(r ↓) + ∆(r)Ψ+(r ↑) . (21.10)

Then we can use Eq. (21.7) to express Ψ-functions in terms of u, v and γ, and then use
commutation relations (21.8) for γ-operators. In this way we arrive at the Bogoliubov-de
Gennes equations

Heu(r) + ∆(r)v(r) = εu(r)

∆∗u(r)−H∗ev(r) = εv(r) . (21.11)

There is a convenient matrix form of these equations,(
He ∆
∆∗ −H∗e

) (
u(r)
v(r)

)
= ε

(
u(r)
v(r)

)
. (21.12)
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Notes

• Hamiltonians He and H∗e are different in magnetic field since the quantities [∓i~∇+
(e/c)A]2 are different.

• One can easily show that solutions of BdG equations for different n are orthogonal.

• if {u, v} is the solution for some ε, then {v∗, u∗} is the solution corresponding to −ε.

The last point of the derivation is to determine the potentials V and ∆. For that we
have to minimize the free energy,

F = 〈Ĥ〉 − TS ,

calculated for the basis diagonalizing Ĥeff . After rather tedious calculations we obtain the
following conditions:

V (r) = −g〈Ψ+(r ↓)Ψ(r ↓)〉 ,
∆(r) = g〈Ψ(r ↑)Ψ(r ↓)〉 . (21.13)

The 1st equation is the usual Hartree result for point interaction. Substituting Ψ-operators
from Eq. (21.7) and using the relationship

〈γ+
nαγmβ〉 = δnmδαβfn , where fn =

[
eεn/kT + 1

]−1
(21.14)

is the Fermi function, we obtain

V (r) = −g
∑
n

[
|un(r)|2fn + |vn(r)|2(1− fn)

]
, (21.15)

∆(r) = +g
∑
n

un(r)vn(r)∗(1− 2fn) . (21.16)

Equations (21.12) together with the self-consistency equation (21.16) constitute a powerful
scheme to solve spatially-inhomogeneous problems.

21.3 N-S interface

Model

The model considered is illustrated in Fig. 21.2. It consists of a disordered normal region
(hatched) adjacent to a superconductor (S). The disordered region may also contain a
geometrical constriction or a tunnel barrier. To obtain a well-defined scattering problem
we insert ideal (impurity-free) normal leads N1 and N2 to the left and right of the disordered
region. The NS interface is located at x = 0.

We assume that the only scattering in the superconductor consists of Andreev reflec-
tion at the NS interface, i.e. we consider the case that the disorder is contained entirely
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Figure 21.2: Normal-metal–superconductor junction containing a disordered normal region
(hatched). Scattering states in the two normal leads N1 and N2 are indicated schematically.

within the normal region. The spatial separation of Andreev and normal scattering is the
key simplification which allows us to relate the conductance directly to the normal-state
scattering matrix. The model is directly applicable to a superconductor in the clean limit
(mean free path in S large compared to the superconducting coherence length ξ), or to a
point-contact junction (formed by a constriction which is narrow compared to ξ). In both
cases the contribution of scattering within the superconductor to the junction resistance
can be neglected.

The scattering states at energy ε are eigenfunctions of the Bogoliubov-de Gennes (BdG)
equation (21.12). To simplify construction of the scattering basis we assume that the
magnetic field B (in the z-direction) vanishes outside the disordered region. One can then
choose a gauge such that A ≡ 0 in lead N2 and in S, while Ax, Az = 0, Ay = A1 ≡ constant
in lead N1.

The pair potential in the bulk of the superconductor (x � ξ) has amplitude ∆0 and
phase φ. The spatial dependence of ∆(r) near the NS interface is determined by the
self-consistency relation (21.16). The coefficient g is the interaction constant of the BCS
theory of superconductivity. At an NS interface, g drops abruptly (over atomic distances)
to zero, in the assumed absence of any pairing interaction in the normal region. Therefore,
∆(r) ≡ 0 for x < 0. At the superconducting side of the NS interface, ∆(r) recovers its
bulk value ∆0eiφ only at some distance from the interface. We will neglect the suppression
of ∆(r) on approaching the NS interface, and use the step-function model

∆(r) = ∆0 e
iφθ(x). (21.17)

This model is also referred to in the literature as a “rigid boundary-condition”. The
conditions for its validity: If the width W of the NS junction is small compared to ξ,
the non-uniformities in ∆(r) extend only over a distance of order W from the junction
(because of “geometrical dilution” of the influence of the narrow junction in the wide
superconductor). Since non-uniformities on length scales � ξ do not affect the dynamics
of the quasiparticles, these can be neglected and the step-function model holds. A point
contact or microbridge belongs in general to this class of junctions. Alternatively, the step-
function model holds also for a wide junction if the resistivity of the junction region is much
bigger than the resistivity of the bulk superconductor. A semiconductor — superconductor
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junction is typically in this second category. Note that both the two cases are consistent
with our assumption that the disorder is contained entirely within the normal region. 1

Scattering theory for N-S systems: Basic expressions

We now construct a basis for the scattering matrix (ŝ-matrix). In the normal lead N2 the
eigenfunctions of the BdG equation (21.12) can be written in the form

ψ±n,e(N2) =
(

1
0

)
(ke
n)−1/2 Φn(y, z) exp(±ike

nx),

ψ±n,h(N2) =
(

0
1

)
(kh
n)−1/2 Φn(y, z) exp(±ikh

nx), (21.19)

where the wavenumbers ke
n and kh

n are given by

ke,h
n ≡ (2m/~2)1/2(EF − En + σe,hε)1/2, (21.20)

and we have defined σe ≡ 1, σh ≡ −1. The labels e and h indicate the electron or hole
character of the wavefunction. The index n labels the modes, Φn(y, z) is the transverse
wavefunction of the n-th mode, and En its threshold energy:

[(p2
y + p2

z)/2m+ V (y, z)]Φn(y, z) = EnΦn(y, z). (21.21)

The eigenfunction Φn is normalized to unity,
∫

dy
∫

dz |Φn|2 = 1. With this normalization
each wavefunction in the basis (21.19) carries the same amount of quasiparticle current.
The eigenfunctions in lead N1 are chosen similarly, but with an additional phase factor
exp[−iσe,h(eA1/~)y] from the vector potential.

A wave incident on the disordered normal region is described in the basis (21.19) by a
vector of coefficients

cin
N ≡

(
c+

e (N1), c−e (N2), c−h (N1), c+
h (N2)

)
. (21.22)

1 It is worth emphasizing that the absence of a pairing interaction in the normal region (g(r) ≡ 0 for
x < 0) implies a vanishing pair potential ∆(r), according to Eq. (21.16), but does not imply a vanishing
order parameter Ψ(r), which is given by

Ψ(r) =
∑
ε>0

v∗(r)u(r)[1− 2f(ε)]. (21.18)

Phase coherence between the electron and hole wave functions u and v leads to Ψ(r) 6= 0 for x < 0.
The term “proximity effect” can therefore mean two different things: One is the suppression of the pair
potential ∆ at the superconducting side of the NS interface. This is a small effect which is often neglected
in the present work. The other is the induction of a non-zero order parameter Ψ at the normal side of the
NS interface. This effect is fully included here, even though Ψ does not appear explicitly in the expressions
which follow. The reason is that the order parameter quantifies the degree of phase coherence between
electrons and holes, but does not itself affect the dynamics of the quasiparticles. (The BdG equation
(21.12) contains ∆ not Ψ.)
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(The mode-index n has been suppressed for simplicity of notation.) The reflected and
transmitted wave has vector of coefficients

cout
N ≡

(
c−e (N1), c+

e (N2), c+
h (N1), c−h (N2)

)
. (21.23)

The ŝ-matrix sN of the normal region relates these two vectors,

cout
N = ŝNc

in
N . (21.24)

Because the normal region does not couple electrons and holes, this matrix has the block-
diagonal form

ŝN(ε) =

(
ŝ0(ε) 0

0 ŝ0(−ε)∗
)
, ŝ0 ≡

(
r11 t12
t21 r22

)
. (21.25)

Here ŝ0 is the unitary ŝ-matrix associated with the single-electron Hamiltonian H0. The
reflection and transmission matrices r(ε) and t(ε) are N × N matrices, N(ε) being the
number of propagating modes at energy ε. (We assume for simplicity that the number of
modes in leads N1 and N2 is the same.)

The matrix s0 is unitary (ŝ†0ŝ0 = 1) and satisfies the symmetry relation ŝ0(ε, B)ij =
ŝ0(ε,−B)ji.

Andreev reflection

For energies 0 < ε < ∆0 there are no propagating modes in the superconductor. We can
then define an ŝ-matrix for Andreev reflection at the NS interface which relates the vector
of coefficients

(
c−e (N2), c+

h (N2)
)

to
(
c+

e (N2), c−h (N2)
)
. The elements of this ŝ-matrix can

be obtained by matching the wavefunctions (21.19) at x = 0 to the decaying solutions
in S of the BdG equation. If terms of order ∆0/εF are neglected (the so-called Andreev
approximation, the result is simply

c−e (N2) = α eiφc−h (N2),

c+
h (N2) = α e−iφc+

e (N2), (21.26)

where α ≡ exp[−i arccos(ε/∆0)]. Andreev reflection transforms an electron mode into a
hole mode, without change of mode index. The transformation is accompanied by a phase
shift, which consists of two parts:

1. A phase shift − arccos(ε/∆0) due to the penetration of the wavefunction into the
superconductor.

2. A phase shift equal to plus or minus the phase of the pair potential in the supercon-
ductor (plus for reflection from hole to electron, minus for the reverse process).
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General relations

We can combine the 2N linear relations (21.26) with the 4N relations (21.24) to obtain a
set of 2N linear relations between the incident wave in lead N1 and the reflected wave in
the same lead:

c−e (N1) = ŝeec
+
e (N1) + ŝehc

−
h (N1),

c+
h (N1) = ŝhec

+
e (N1) + ŝhhc

−
h (N1). (21.27)

The four N ×N matrices ŝee, ŝhh, ŝeh, and ŝhe form together the scattering matrix ŝ of the
whole system for energies 0 < ε < ∆0. An electron incident in lead N1 is reflected either as
an electron (with scattering amplitudes ŝee) or as a hole (with scattering amplitudes ŝhe).
Similarly, the matrices ŝhh and ŝeh contain the scattering amplitudes for reflection of a hole
as a hole or as an electron. After some algebra we find for these matrices the expressions

ŝee(ε) = r11(ε) + α2t12(ε)r∗22(−ε)M̂et21(ε), (21.28)

ŝhh(ε) = r∗11(−ε) + α2t∗12(−ε)r22(ε)M̂ht
∗
21(−ε), (21.29)

ŝeh(ε) = α eiφt12(ε)M̂ht
∗
21(−ε), (21.30)

ŝhe(ε) = α e−iφt∗12(−ε)M̂et21(ε), (21.31)

where we have defined the matrices

M̂e ≡ [1− α2r22(ε)r∗22(−ε)]−1,

M̂h ≡ [1− α2r∗22(−ε)r22(ε)]−1. (21.32)

One can verify that the ŝ-matrix constructed from these four sub-matrices satisfies unitarity
(hats†ŝ = 1) and the symmetry relation ŝ(ε, B, φ)ij = ŝ(ε,−B,−φ)ji, as required by
quasiparticle-current conservation and by time-reversal invariance, respectively.

Conductance of N-S boundary

For the linear-response conductance GNS of the NS junction at zero temperature we only
need the ŝ-matrix at the Fermi level, i.e. at ε = 0. We restrict ourselves to this case and
omit the argument ε in what follows. We apply the general formula

GNS =
2e2

h
Tr (1− ŝees

†
ee + ŝheŝ

†
he) =

4e2

h
Tr ŝheŝ

†
he. (21.33)

The second equality follows from unitarity of ŝ, which implies 1 − ŝeeŝ
†
ee = ŝehŝ

†
eh =

(ŝ†ee)
−1ŝ†heŝheŝ

†
ee, so that Tr (1 − ŝeeŝ

†
ee) = Tr ŝheŝ

†
he. We now substitute Eq. (21.31) for

ε = 0 (α = −i) into Eq. (21.33), and obtain the expression

GNS =
4e2

h
Tr t̂†12t̂12(1 + r̂∗22r̂22)−1t̂∗21t̂

T
21(1 + r̂†22r̂

T
22)−1, (21.34)
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where M̂T ≡ (M̂∗)† denotes the transpose of a matrix. The advantage of Eq. (21.34) over
Eq. (21.33) is that the former can be evaluated by using standard techniques developed for
quantum transport in the normal state, since the only input is the normal-state scattering
matrix. The effects of multiple Andreev reflections are fully incorporated by the two matrix
inversions in Eq. (21.34).

In the absence of a magnetic field the general formula (21.34) simplifies considerably.
Since the ŝ-matrix ŝ0 of the normal region is symmetric for B = 0, one has r̂22 = r̂T

22 and
t̂12 = t̂T21. Equation (21.34) then takes the form

GNS =
4e2

h
Tr t̂†12t̂12(1 + r̂†22r̂22)−1t̂†12t̂12(1 + r̂†22r̂22)−1

=
4e2

h
Tr
(
t̂†12t̂12(2− t̂†12t̂12)−1

)2

. (21.35)

In the second equality we have used the unitarity relation r̂†22r̂22 + t̂†12t̂12 = 1. The trace
(21.35) depends only on the eigenvalues of the Hermitian matrix t̂†12t̂12. We denote these
eigenvalues by Tn (n = 1, 2, . . . N). Since the matrices t̂†12t12, t̂12t

†
12, t̂†21t21, and t̂21t

†
21 all

have the same set of eigenvalues, we can omit the indices and write simply t̂t̂†. We obtain
the following relation between the conductance and the transmission eigenvalues:

GNS =
4e2

h

N∑
n=1

T 2
n

(2− Tn)2
. (21.36)

This is the central result for NS interface.
A formula of similar generality for the normal-metal conductance GN is the multi-

channel Landauer formula

GN =
2e2

h
Tr t̂t̂† ≡ 2e2

h

N∑
n=1

Tn. (21.37)

In contrast to the Landauer formula, Eq. (21.36) for the conductance of an NS junction
is a non-linear function of the transmission eigenvalues Tn. When dealing with a non-
linear multi-channel formula as Eq. (21.36), it is of importance to distinguish between the
transmission eigenvalue Tn and the modal transmission probability Tn ≡

∑N
m=1 |tnm|2. The

former is an eigenvalue of the matrix tt†, the latter a diagonal element of that matrix. The
Landauer formula (21.37) can be written equivalently as a sum over eigenvalues or as sum
over modal transmission probabilities:

h

2e2
GN =

N∑
n=1

Tn ≡
N∑
n=1

Tn. (21.38)

This equivalence is of importance for (numerical) evaluations of the Landauer formula, in
which one calculates the probability that an electron injected in mode n is transmitted,
and then obtains the conductance by summing over all modes. The non-linear scattering
formula (21.36), in contrast, can not be written in terms of modal transmission probabilities
alone: The off-diagonal elements of t̂t̂† contribute to GNS in an essential way.
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Simple examples

Quantum point contact

Consider first the case that the normal metal consists of a ballistic constriction with a
normal-state conductance quantized at GN = 2N0e

2/h (a quantum point contact). The
integer N0 is the number of occupied one-dimensional subbands (per spin direction) in
the constriction, or alternatively the number of transverse modes at the Fermi level which
can propagate through the constriction. Note that N0 � N . An “ideal” quantum point
contact is characterized by a special set of transmission eigenvalues, which are equal to
either zero or one:

Tn =

{
1 if 1 ≤ n ≤ N0,
0 if N0 < n ≤ N,

(21.39)

where the eigenvalues have been ordered from large to small. We emphasize that Eq.
(21.39) does not imply that the transport through the constriction is adiabatic. In the case
of adiabatic transport, the transmission eigenvalue Tn is equal to the modal transmission
probability Tn. In the absence of adiabaticity there is no direct relation between Tn and
Tn. Substitution of Eq. (21.39) into Eq. (21.36) yields

GNS =
4e2

h
N0. (21.40)

The conductance of the NS junction is quantized in units of 4e2/h. This is twice the
conductance quantum in the normal state, due to the current-doubling effect of Andreev
reflection.

In the classical limit N0 → ∞ we recover the well-known result GNS = 2GN for a
classical ballistic point contact. In the quantum regime, however, the simple factor-of-two
enhancement only holds for the conductance plateaus, where Eq. (21.39) applies, and not
to the transition region between two subsequent plateaus of quantized conductance. To
illustrate this, we compare in Fig. 21.3 the conductances GNS and 2GN for a saddle-point
constriction model in a two-dimensional electron gas. Appreciable differences appear in
the transition region, where GNS lies below twice GN. This is actually a rigorous inequality,
which follows from Eqs. (21.36) and (21.37) for arbitrary transmission matrix:

GNS ≤ 2GN, for all t. (21.41)

Quantum dot

Consider next a small confined region (of dimensions comparable to the Fermi wavelength),
which is weakly coupled by tunnel barriers to two electron reservoirs. We assume that
transport through this quantum dot occurs via resonant tunneling through a single bound
state. Let εres be the energy of the resonant level, relative to the Fermi level in the
reservoirs, and let γ1/~ and γ2/~ be the tunnel rates through the two barriers. We denote
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Figure 21.3: Solid curve: Conductance GNS versus Fermi energy of a quantum point contact
between a normal and a superconducting reservoir (shown schematically in the inset). The
dotted curve is twice the conductance GN for the case of two normal reservoirs. The
constriction is defined by the 2D saddle-point potential V (x, y) = V0− 1

2
mω2

xx
2 + 1

2
mω2

yy
2,

with ωy/ωx = 3; GNS is calculated from eq. (21.36), with Tn = [1 + exp(−2πεn/~ωx)]−1,
εn ≡ EF − V0 − (n− 1

2
)~ωy.

γ ≡ γ1 + γ2. If γ � ∆E (with ∆E the level spacing in the quantum dot), the conductance
GN in the case of non-interacting electrons has the form

h

2e2
GN =

γ1γ2

ε2
res + 1

4
γ2
≡ TBW, (21.42)

with TBW the Breit-Wigner transmission probability at the Fermi level. The normal-state
transmission matrix t12(ε) which yields this conductance has matrix elements

t12(ε) = U1τ(ε)U2, τ(ε)nm ≡
√
γ1nγ2m

ε− εres + 1
2
iγ
, (21.43)

where
∑

n γ1n ≡ γ1,
∑

n γ2n ≡ γ2, and U1, U2 are two unitary matrices (which need not be
further specified).

Let us now investigate how the conductance (21.42) is modified if one of the two reser-
voirs is in the superconducting state. The transmission matrix product t12t

†
12 (evaluated

at the Fermi level ε = 0) following from Eq. (21.43) is

t12t
†
12 = U1MU †1 , Mnm ≡

TBW

γ1

√
γ1nγ1m. (21.44)
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Its eigenvalues are

Tn =

{
TBW if n = 1,
0 if 2 ≤ n ≤ N.

(21.45)

Substitution into eq. (21.36) yields the conductance

GNS =
4e2

h

(
TBW

2− TBW

)2

=
4e2

h

(
2γ1γ2

4ε2
res + γ2

1 + γ2
2

)2

. (21.46)

The conductance on resonance (εres = 0) is maximal in the case of equal tunnel rates
(γ1 = γ2), and is then equal to 4e2/h — independent of γ. The lineshape for this case
is shown in Fig. 21.4 (solid curve). It differs substantially from the Lorentzian lineshape
(21.42) of the Breit-Wigner formula (dotted curve). The amplitude and lineshape of the

Figure 21.4: Conductance versus energy of the resonant level, from eq. (21.46) for the case
of equal tunnel barriers (solid curve). The dotted curve is the Breit-Wigner transmission
probability (21.42). The inset shows schematically the normal-metal — quantum-dot —
superconductor junction.

conductance resonance (21.46) does not depend on the relative magnitude of the resonance
width γ and the superconducting energy gap ∆0. This is in contrast to the supercurrent
resonance in a superconductor — quantum dot — superconductor Josephson junction,
which depends sensitively on the ratio γ/∆0. The difference can be traced to the fact
that the conductance (in the zero-temperature, zero-voltage limit) is strictly a Fermi-level
property, whereas all states within ∆0 of the Fermi level contribute to the Josephson effect.
Since we have assumed non-interacting quasiparticles, the above results apply to a quantum
dot with a small charging energy U for double occupancy of the resonant state.
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Disordered junction

We now turn to the regime of diffusive transport through a disordered point contact or
microbridge between a normal and a superconducting reservoir. The model considered is
that of an NS junction containing a disordered normal region of length L much greater
than the mean free path l for elastic impurity scattering, but much smaller than the
localization length Nl. We calculate the average conductance of the junction, averaged
over an ensemble of impurity configurations. We begin by parameterizing the transmission
eigenvalue Tn in terms of a channel-dependent localization length ζn:

Tn =
1

cosh2(L/ζn)
. (21.47)

A fundamental result in quantum transport is that the inverse localization length is uni-
formly distributed between 0 and 1/ζmin ' 1/l for l � L � Nl. One can therefore
write 〈∑N

n=1 f(Tn)
〉

〈∑N
n=1 Tn

〉 =

∫ L/ζmin

0
dx f(cosh−2 x)∫ L/ζmin

0
dx cosh−2 x

=

∫ ∞
0

dx f(cosh−2 x) , (21.48)

where 〈. . .〉 indicates the ensemble average and f(T ) is an arbitrary function of the trans-
mission eigenvalue such that f(T )→ 0 for T → 0. In the second equality in eq. (21.48) we
have used that L/ζmin ' L/l� 1 to replace the upper integration limit by ∞.

Combining Eqs. (21.36), (21.37), and (21.48), we find

〈GNS〉 = 2〈GN〉
∫ ∞

0

dx

(
cosh−2 x

2− cosh−2 x

)2

= 〈GN〉. (21.49)

We conclude that — although GNS according to Eq. (21.36) is of second order in the trans-
mission eigenvalues Tn — the ensemble average 〈GNS〉 is of first order in l/L. The resolution
of this paradox is that the T ’s are not distributed uniformly, but are either exponentially
small (closed channels) or of order unity (open channels). Hence the average of T 2

n is of
the same order as the average of Tn. Off-diagonal elements of the transmission matrix tt†

are crucial to arrive at the result (21.49). Indeed, if one would evaluate Eq. (21.36) with
the transmission eigenvalues Tn replaced by the modal transmission probabilities Tn, one
would find a totally wrong result: Since Tn ' l/L� 1, one would find GNS ' (l/L)GN —
which underestimates the conductance of the NS junction by the factor L/l.

The present derivation, in contrast, is fully quantum mechanical. It applies to the
“mesoscopic” regime L < lφ, in which transport is phase coherent. If the condition L� Nl
is relaxed, differences between 〈GNS〉 and 〈GN〉 appear.

21.4 Andreev levels and Josephson effect

Consider a SNS weak link schematically depicted in Fig. 21.5. We assume that the only
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Figure 21.5: S-N-S Josephson junction containing a disordered normal region (hatched)

scattering on the NS interfaces x = ±L/2 is the Andreev one. The key simplification is
to separate in space normal and Andreev scattering, its applicability range being ξ0 � lS
where lS is the mean free path in the superconductor. The junction width is assumed
to be much smaller than the Josephson penetration depth, so the vector-potential can be
disregarded, as well as reduction of the order parameter ∆. Thus we approximate

∆ =

{
∆0 exp(±iφ/2) for |x| > L/2 ,
0 for |x| < L/2 .

(21.50)

This model is rather universal, it works also for S-S-S junctions with a constriction provided
its size is . ξ.

Andreev levels

Since Josephson effect is the equilibrium property let us start with the excitation spectrum.
For that we have to solve the BdG equation (21.12) with proper boundary conditions. In
the normal lead N1 the eigenfunctions are

ψ±n,e(N1) =

(
1
0

)
(ken)−1/2Φn exp[±iken(x+ L/2)] ,

ψ±n,h(N1) =

(
0
1

)
(khn)−1/2Φn exp[±ikhn(x+ L/2)] . (21.51)

Here ke,hn = (2m/~2)1/2(EF − En + σe,hε)1/2 and σe = 1, σh = −1. The index n labels the
transverse modes, Φn(y, x) is the transverse wave function for the nth mode, and En its
threshold energy. The wave functions for the lead N2 are chosen in a similar way with the
substitution L→ −L.

In the superconducting lead S1, where ∆ = ∆0 exp(iφ/2), the eigenfunctions are

ψ±n,e(S1) =

(
eiη

e/2

e−iη
e/2

)
(2qen)−1/2(ε2/∆2 − 1)−1/4Φn exp[±iqen(x+ L/2)] , (21.52)
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while for ψ±n,h(S1) the label e replaced by h. Here

qe,hn = (2m/~2)1/2[EF − En + σe,h(ε2 −∆2
0)1/2]1/2, ηe = φ/2 + σe,h arccos(ε/∆0) .

The complex functions are defined such that Re qe,h ≥ 0, Im q2 ≥ 0, Im qh ≤ 0. The
function arccos t ∈ (0, π/2) for 0 < t < 1, while arccos t ≡ −i ln

[
t+ (t2 − 1)1/2

]
for t > 1.

The eigenfunctions for S2 are obtained by substitution φ→ −φ, L→ −L. The functions
(21.51) and (21.52) are normalized to carry the same amount of quasiparticle current since
we are going to use them as a basis for the scattering problem.

Now we have to introduce the proper scattering matrices. The wave incident on the
disordered normal region is described in the basis (21.51) by the vector of the coefficients

cin
N ≡

(
c+
e (N1), c−e (N2), c−h (N1), c+

h (N2)

)
.

(The mode index is omitted for brevity). The reflected and transmitted waves have vector
of coefficients

cout
N ≡

(
c−e (N1), c+

e (N2), c+
h (N1), c−h (N2)

)
.

The matrix ŝN relates the above two vectors as

cout
N = ŝNcin

N .

An important simplification is that the disordered region does not couple electrons and
holes. As result the matrix ŝN has a block-diagonal form,

ŝN(ε) =

(
ŝ0(ε) 0

0 ŝ∗0(−ε)

)
, ŝ0(ε) =

(
r11 t12

t21 r22

)
. (21.53)

ŝ0 is the unitary and symmetric s-matrix associated with the Hamiltonian H0. The el-
ements rik and tik are N × N matrices in the mode space, where N is the number of
propagating modes for given ε.

In a superconductor, there is no propagating modes for ε < ∆. We can then define
s-matrix for the Andreev reflection, ŝA, at the NS interfaces as

cout
N = ŝAcin

N .

The elements of ŝA can be obtained by matching the functions (21.51) at |x| = ±L/2 to
the decaying wave functions (21.52). The result is

ŝA(ε) = a

(
0 rA
r∗A 0

)
, r̂A(ε) =

(
eφ/2 0
e−φ/2 0

)
. (21.54)

Here a = arccos(ε/∆0).
For ε > ∆0 we have to define the s-matrix of the whole junction as

cout
S = ŝSNScin

S .
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The vectors cin,out
S are the coefficients of the expansion of the incoming and outgoing waves

in leads S1 and S2 in terms of the wave functions (21.52). By matching the wave functions
(21.51) and (21.52) at |x| = L/2 one can obtain

ŝSNS = Û−1(1− M̂)−1(1− M̂ †)ŝN Û (21.55)

where

Û = a

(
rA 0
0 r∗A

)
, M̂ = aŝN

(
0 rA
r∗A 0

)
.

Now we are ready to find the excitation spectrum. For ε < ∆0 there is no outgoing waves,
and ŝN ŝA = 1. Consequently, det(ŝN ŝA − 1) = 0. Using the identity

det

(
â b̂

ĉ d̂

)
= det(âd̂− âĉâ−1b̂)

we get the dispersion relation for the Andreev levels εp,

det

(
1− a2(εp)r

∗
Aŝ0((εp)rAŝ

∗
0(−εp)

)
= 0 . (21.56)

Short junction. The above equation allows further simplification for a short junction
with L� ξ. This inequality is equivalent to ∆0 � Ec ≡ ~/τ where τ is the traversal time
through the junction. Since the elements of ŝ0 change significantly at the energies of the
order of Ec one can put ŝ0(ε) ≈ ŝ0(−ε) ≈ ŝ0(0). Then instead of Eq. (21.56) we get

det

[
(1− ε2p/∆2

0)1̂− t̂12t̂
∗
21 sin2(φ/2)

]
= 0 . (21.57)

Denoting Tp the eigenvalues of the N ×N matrix t̂12t̂
∗
21 we have

εp = ∆0

[
1− Tp sin2(φ/2)

]
. (21.58)

Josephson current

The Josephson current can be derived from the known expression for the BCS free energy
F for the superconductor as

I(φ) = (2e/~)(dF/dφ) .

After rather tedious calculations one can obtain the following result:

I = I1 + I2 + I3 , (21.59)

I1 = −2e

~
∑
p

tanh(εp/2kT )
dεp
dφ

,

I2 = −2e

~
(2kT )

∫ ∞
∆0

dε ln[2 cosh(ε/2kT )]
dρ

dφ
, (21.60)

I3 =
2e

~
d

dφ

∫
dr |∆|2/g . (21.61)
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The 1st term is the contribution of the discrete states (Andreev levels), the 2nd one is
due to the continuous spectrum with density of states ρ(ε), the 3d one vanishes for φ-
independent ∆. For s shot junction the contribution of the continuous spectrum vanishes.
Substituting Eq. (21.58) into Eq. (21.60) we get

I =
e∆2

0

2~
sinφ

N∑
p=1

Tp
εp(φ)

tanh

(
εp(φ)

2kT

)
. (21.62)

We see that, contrary to the Landauer conductance, the Josephson current is a nonlinear
function of the transmittance Tp.

For a ballistic point contact, L� l,

Tp =

{
1 for p ≤ N0

0 for p ≥ N0
,

and
I = Ic sinφ , Ic = N0e∆0/~ (quantized) . (21.63)

In the opposite limiting case, L� l, the transmittance is small, and

Ic =
e∆0

~
Tr t̂t̂† tanh

∆0

2kT
=
π∆0

2e
G (21.64)

where conductance G is calculated according to the Landauer formula. The above result
coincides with the Ambegaokar-Baratoff formula for a tunnel junction.

21.5 Superconducting nanoparticles

Coulomb blockade of Andreev reflection

Consider at an ideal superconducting electrode between normal bulk electrodes forming
two tunnel junctions in series, Fig. 21.6. The superconducting part modifies strongly

Figure 21.6: An ideal superconducting electrode between normal bulk electrodes forming
two tunnel junctions in series.

tunneling through the system which becomes sensitive to the parity of the electron number
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N in the superconductor. When N is even, inelastic tunneling cannot take place (at zero
temperature) at voltages below 2∆/e, and only elastic tunneling is allowed. For odd N a
quasiparticle exists unavoidably in the superconductor, which opens an inelastic channel.

The total number N of the free electrons in the superconductor depends on the elec-
trostatic energy,

U =
Q2

2C
− eV

C
(C1n2 + C2n1) , Q = en− ϕC, n = n1 − n2, C = C1 + C2 . (21.65)

Here ni is the number of particles that have tunneled through ith junction, Ci are junction
capacitances, and ϕ is the potential difference between the middle of the grain and the
leads at vanishing bias voltage V . The total energy can be written as

E(N) =
[e(N −N0)− Cϕ]2

2C
+ E0(N) , E0(N) =

{
∆ for odd N
0 for even N .

(21.66)

Here N0 is the electron number at φ = 0, while E0 allows for the quasiparticle energy. The
graph of E(N) is schematically shown in Fig. 21.7. The curves correspond to different n,

Figure 21.7: From Averin & Nazarov, Phys. Rev. Lett. 69, 1993 (1992).

and the lowest curve at a given ϕ corresponds to the equilibrium number n of the excess
electrons. One can see that the parity of the electrons is changed at the intersections.
Since the potential difference ϕ can be changed by the gate the system under consideration
behaves as a parity-sensitive single-electron transistor.
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Figure 21.8: From Eiles et al., Phys. Rev. Lett. 70, 1862 (1993).

The experimental I − V -curve for such a device is shown in Fig. 21.8 Specifying the
Coulomb energy for the system under consideration as

E(N) =
(Ne)2

2C
+
Ne

C
(ClVl + CrVr + CgVg) , C = Cl + Cr + Cg , (21.67)

we observe that E(N) = E(N + 2) at V
(N)
g = −(N + 1)e/Cg.

Parity-sensitive transport

To compute the current near the resonances one needs to estimate the tunneling rates Γl
and Γr for the tunneling from the left lead and from the right lead to the grain, respectively.
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Figure 21.9: From Eiles et al., Phys. Rev. Lett. 70, 1862 (1993).

They depend on the energy differences εi = E(N + 2)− E(N)− 2eVi as

Γi =
2π

~
γi

εi
exp(εi/kT )− 1

. (21.68)

This is a golden-rule expression which differs from the normal-state expression by two
features: (i) the excitation energy corresponds to transfer of two electrons, (ii) the dimen-
sionless parameters γi should be calculated in the second order in tunneling transparency
since we are interested in the transfer of a pair of electrons,

γi =
1

Ni

(
Gi~
2πe2

)2
4∆2

∆2 − E2
c

[
arctan

√
∆ + Ec
∆− Ec

]2

, Ec = e2/2C . (21.69)

Here Ni is the geometric factor of the order of the number of transverse modes in the tunnel-
ing junction, while Gi is its normal-state conductance. The result for Ohmic conductance
is

G =
4πe2

~
γlγr
γl + γr

V
sinhV

, V ≡ 2eCg(Vg − V (N)
g )/CkT . (21.70)

The G vs. Vg dependence is a set of sharp peaks at Vg = V
(N)
g . The non-Ohmic I−V -curves

for different gate voltages are shown in Fig. 21.9.
In general, the “phase diagram” in the coordinates V −Vg showing an interplay between

single-electron and pair tunneling is observed. In general, the “phase diagram” in the
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Figure 21.10: From Hergenrother et al., Phys. Rev. Lett. 72, 1742 (1994).
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coordinates V − Vg showing an interplay between single-electron and pair tunneling is
observed.

There are other effects regarding parity-effect tunneling which are beyond the scope of
this course. Among them are quantum co-tunneling through virtual states which competes
with the blockaded transport, non-perturbative effects for high-transparency contacts, in-
fluence of magnetic field, etc.



Part V

Appendices

431





Chapter 22

Solutions of the Problems

Chapter 1
Problem 1.1. Show that (a1[a2a3]) = (a3[a1a2]) = (a2[a3a1]).

Solution. Direct calculation.

Problem 1.2. Show that only n = 1, 2, 3, 6 are available.
Solution.

i cosφ φ
-2 -1 π
-1 -1/2 2π/3
0 0 π/2
1 1/2 π/2
2 1 0

Problem 1.3. We have mentioned that primitive vectors are not unique. New vectors can
be defined as

a′i =
∑
k

βikak,

the sufficient condition for the matrix β̂ is

det(βik) = ±1. (22.1)

Show that this equality is sufficient.
Solution. The inverse transform is

ak =
∑
k

β−1
ki a′i,

where

β−1
ki =

A(βik)

det(βik)

433
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where A(βik) is the algebraic augment. Then, for any lattice vector we have

a =
∑
k

nkak =
∑
k,i

nk
A(βik)

det(βik)
a′i.

All the coefficients are to be integer, so we return to the condition (22.1).

Problem 1.4. Derive the expressions (1.10) for reciprocal lattice vectors.
Solution. Let is expand the unknown vector b in terms of 3 non-coplanar vectors [aiak]

b = α[a1a2] + β[a2a3] + γ[a3a1] . (22.2)

Then we can substitute Eq. (22.2) into (1.9) we get

{α, β, γ} =
2πgi
V0

.

Problem 1.5. Find the reciprocal lattice vectors for fcc lattice.
Solution We write lattice vectors for fcc as

a1 =
a

2
(y + z) ,

a2 =
a

2
(z + x) ,

a1 =
a

2
(x + y)

(see Fig.1.6). The volume of the cell is V0 = a3/4. Making use of the definition (1.10) we
get

b1 =
2π

a
(−x + y + z) ,

b2 =
2π

a
(−y + z + x) ,

b1 =
2π

a
(−z + x + y) .

Problem 1.6. Find the width of the scattering peak at the half intensity due to finite size
of the chain with N sites.

Solution Introducing the dimensionless quantity x = Na∆k′/2 where ∆k′ is the peak’s
width at the half intensity we get the following equation

sin2 x = x2/2.

The solution is x ≈ 1.38.

Chapter 2
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Problem 2.1. Derive the dispersion relation (2.9).
Solution. Substituting (2.8) into Eq. (2.7) we get

−mω2 = −C
(
2− e−iqa − eiqa

)
.

Then one can use the relations (B.1) and (B.2) of the Appendix B.

Problem 2.2. Derive the expression (2.13).

Solution From the Eqs. (2.9), (2.12) we get dω = a
√

C
m
| cos qa

2
|dq and dq = 2π

aL
dg. The

number dz of the vibration modes within the interval (−π/a, π/a) is equal to 2z because
one has to sum over ±q. Collecting these expressions and using the formula

cos
aq

2
=

√
1− sin2 aq

2
=

√
1− ω2

4C/m

we get the formula (2.13).

Problem 2.3. Derive Eq. (2.25).
Solution Substitute expressions (2.23) to Eq. (2.24) and do algebra.

Problem 2.4. Prove the relation of the Section 2.2.
Solution To prove the relations it is enough to apply the equilibrium condition

(
∂Φ

∂unαk

)
0

=

0 for constant displacement u0 of all the atoms.

Problem 2.5. Prove the relation (2.35).
Solution Use the definition (2.34) of the dynamic matrix and its property (2.29).

Problem 2.6. Prove the equation (2.74).
Solution. We express the displacements according to the definition (2.72) and get

T =
1

2N

∑
nkα

[∑
qj

ejkα(q)ȧj(q, t)e
iqan

]2

=

=
1

2N

∑
nkα

∑
qjq′j′

[
ejkα(q)ȧj(q, t)e

iqane∗j′kα(q)ȧ∗j′(q
′, t)e−iq

′an

]
.

Then we use the condition ∑
n

ei(q−q
′)an = Nδqq′ .

Problem 2.7. Prove the expression (2.75) for the potential energy.
Solution. We have

Φ =
1

2

∑
all

Φαβ

(
kk′

nn′

)
uknαu

k′

n′β =

=
1

2N

∑
all

Φαβ

(
kk′

nn′

)
1

√
mkmk′

×

×
∑
qjq′j′

ejkα(q)ȧj(q, t)e
iqane∗j′kα(q)ȧ∗j′(q

′, t)e−iq
′an′ .
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Then, let us transform∑
nn′

1
√
mkmk′

Φαβ

(
kk′

nn′

)
ei(q

′an′−qan) =

=
∑
n

ei(q
′−q)an

∑
n′

1
√
mkmk′

Φαβ

(
kk′

nn′

)
eiq
′(an′−an) =

= Nδqq′D
kk′

αβ (q) .

Now we can sum over q′ and use the equation of motion (2.20) and normalization condition
for eigenvectors ej.

Problem 2.8. Prove the expression (2.79).
Solution. According to the definition and equation of motion

ȧj(q) =
1

2

[
Q̇j(q) + Q̇j(−q)

]
+

+
iωj(q)

2
[Qj(−q)−Qj(q)] .

Combining this expression with the expression for aj and inserting into the expression for
the energy (2.76) we get the expression (2.79).

Problem 2.9. Prove the expression (2.90).
Solution. One can use the definition (2.89) and the recursion formula

H ′N(ξ) = 2NHN−1(ξ) .

Chapter 3

Problem 3.1. Derive Eq. (3.15).
Solution. Substituting (3.14) into (3.15) we get

ψp(x) =
1

N

∑
n,p′

ei(p−p
′)na/~ψp′(x) = ψp(x) .

Problem 3.2 Prove the orthogonality of the Wannier functions.
Solution. ∫

w∗n(x)wm(x) dx =
1

N

∑
pp′

ei(pn−p
′m)a/~

∫
ψ∗p(x)ψp′(x) dx =

=
1

N

∑
p

eip(n−m)a/~ =
a

2π~

∫ π~/a

−π~/a
eip(n−m)a/hbar dp =

=

{
sin[π(n−m)]/[π(n−m] = 0 , n 6= m
1 , n = m

}
= δn,m .
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Problem 3.3 Derive expression (3.16).
Solution. Expand both numerator and denominator in powers of h and I.

Problem 3.4 Derive expression (3.24).
Solution. The number of nearest neighbors is 6. We have

1−6∑
0

eika0 =
∑
i

(
eikia + e−ikia

)
.

Problem 3.5 Prove the identity (3.39).
Solution. We expand the exponential in the series

exp(a∇) = 1 + a∇+
1

2
(a∇)2 + · · ·

and than we see that it is just the same as the expansion of the shifted function.

Problem 3.6. Prove the formula (3.41).
Solution. We start from the SE for the Bloch function

∇2ψ +
~2

2m
[ε(k)− V (r)]ψ = 0 .

Then we take the partial derivative of the equation with respect to, say, kx with the account
of relations

∂

∂kx
[ε(k)− V ]ψ =

∂ε

∂kx
ψ + (ε− V )

∂ψ

∂kx
, (22.3)

∂ψ

∂kx
=

∂

∂kx

(
uekr

)
= ixψ + ekr

∂u

∂kx
, (22.4)

and

∇2 ∂ψ

∂kx
= 2i

∂ψ

∂x
+ ix∇2ψ +∇2

(
eikr

∂u

∂x

)
. (22.5)

As a result, we get

2i
∂ψ

∂x
+

2m

~2

∂ε

∂kx
ψ + ix

{
∇2ψ +

2m

~2
(ε− V )ψ

}
+

+

[
∇2 +

2m

~2
(ε− V )

]
eikr

∂u

∂kx
= 0 (22.6)

where the curly bracket vanishes according to SE. Then we multiply the equation by ψ∗

and integrate over r:

2i

∫
ψ∗
∂ψ

∂x
d3r +

2m

~2

∂ε

∂kx

∫
ψ∗ψ d3r +

+

∫
eikr

∂u

∂kx

[
∇2 +

2m

~2
(ε− V )

]
ψ∗ d3r = 0 , (22.7)
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where we have used the integration by parts. The last item in the l.h.s. is also equal to
zero (SE) and we come to the result.

Chapter 4

Problem 4.1. Calculate the partition function for a harmonic oscillator.
Solution. Using the definition, we get

Z = e−~ω/2kBT
∞∑
N=0

e−N~ω/kBT .

The we use the formula for geometric progression to get the result.

Problem 4.2. Prove the expression (4.11).
Solution. Use the formulas εk = ~2k2/2m and

δ [z − f(y)] =
δ(y − zy)
|f ′(zy)|

where zy is determined by the condition f(zy) = z.

Problem 4.3. Calculate temperature-dependent corrections to the chemical potential of
a Fermi gas.

Solution. To calculate the integrals with the Fermi function

I =

∫ ∞
0

χ(ε)f(ε) dε

it is convenient first to integrate by parts. If we introduce

ϕ(ε) =

∫ ε

0

χ(x) dx

it is easy to show that

I =

∫ ∞
0

ϕ(ε)

(
−∂f0

dε

)
dε.

At low temperatures the function
(
−∂f0

dε

)
behaves as δ-function at we will take advantage

of this fact. Namely, we expand ϕ(ε) as

ϕ(ε) = ϕ(εF ) + ϕ′(εF )(ε− εF ) +
1

2
ϕ′′(εF )(ε− εF )2 + . . .

and introduce dimensionless variable η = (ε− εF )/kBT . We have(
−∂f0

∂ε

)
dε =

e−η

(e−η + 1)2
dη.

Finally,
I = ϕ(εF ) + kBTϕ

′(εF )I1 + (kBT )2ϕ′′(εF )I2 + . . .
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where

I1 = 0, I2 =

∫ ∞
0

η2e−η dη

2(e−η + 1)2
=
π2

6
.

Making use of the last expression we get

ε
2/3
F = µ2/3

[
1 +

π2

8

(
kBT

εF

)2
]

that leads to the expression we are interested in.

Problem 4.4. Calculate specific heat for the Boltzmann gas.
Solution. Use the general expression (4.16) with the Boltzmann distribution function.

Problem 4.5. Derive expression (4.22)for magnetic susceptibility.
Solution. Use the general procedure outlined in the Problem 4.3 with

ϕ(ε) = g(ε).

Problem 4.6. Derive the formula (4.33).
Solution. We chose the integration variable to

y =
ε−N − 1/2

kBT

and take into account that ∫ ∞
0

y3/2e−y dy =
3
√
π

4
.

Then the sum over N can be done as the sum of geometric progression.

Chapter 6

Problem 6.1. An electron with a energy spectrum

ε(p) =
p2
x

2mx

+
p2
y

2my

+
p2
z

2mz

is placed into a magnetic field parallel to z-axis. Find the cyclotron effective mass and
compare it with the density-of-states effective mass defined as

g(ε) =

√
2m

3/2
d ε1/2

π2~3
.

Solution. The equation for the electron trajectory, ε(p) = ε for a given pz, has the form

1

2ε− p2
z/mz

(
p2
x

mx

+
p2
y

my

)
= 1 .
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This is the ellipse having the area

S(ε, pz) = π(2ε− p2
z/mz)

√
mxmy .

Thus, according to definition,

mc =
1

2π

∂S(ε, pz)

∂ε
=
√
mxmy .

According to the definition of the density of states,

g(ε) =
2

(2π~)3

∫
dpxdpydpz δ[ε(p)− ε] .

Introducing new variables as

px = ξ
√

2mx , py = η
√

2my , py = ζ
√

2mz

we obtain that
md = (mxmymz)

1/3 .

Problem 6.2. Derive the Drude formula (6.17).

σ =
ne2τtr
m

.

from the expression
σ = e2D(εF )g(εF ) .

Solution. For zero temperature we have

g(εF ) =
∂n

∂εF
=

3

2

n

εF
=

3n

mv2
F

.

Problem 6.3. Assume that that the electrons obey Boltzmann statistics,

f0(ε) = exp

(
ζ − ε
T

)
,

and that
τtr(ε, T ) ∝ εr .

Expressing the transport relaxation time as

τtr(ε, T ) = τ0(T )(ε/kT )r

find the expressions for Drude conductance at ωτ0 � 1 and ωτ0 � 1.
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Solution Using the definition of Drude conductance we get

〈τtr〉 = τ(T )
Γ(r + 5/2)

Γ(5/2)
.

Thus, σ0 ∝ τ0(T ).
At large frequencies,

Reσ(ω) =
ne2

mω2

〈
1

τtr

〉
=

ne2

mω2τ0(T )

Γ(5/2− r)
Γ(5/2)

.

Problem 6.4. Compare thermoelectric coefficitns η for degenerate and non-degenerate
electron gas. Assume

τtr(ε, T ) = τ0(T )(ε/kT )r .

Solution. It is practical to introduce the integration variable x = ε/T and denote
ζ∗ = ζ/T (here we skip the Boltzmann constant k for brevity). Then(

−∂f0

∂ε

)
=

1

T
exp(ζ∗ − x) , g(ε)D(ε)(ε− ζ) = g(T )D(T )T (x− ζ∗)xr+3/2 .

Thus

η = −eg(T )D(T )eζ∗
∫ ∞

0

dx (x− ζ∗)xr+3/2e−x

= −eg(T )D(T )eζ∗[Γ(r + 7/2)− ζ∗Γ(r + 5/2)] .

Similarly,
σ0 = e2g(T )D(T )eζ∗Γ(r + 5/2) .

Thus, introducing k we get

α = −k
e

(r + 5/2− ζ∗) .

Note that

n = eζ
∗
g(T )TΓ(3/2) → ζ∗ = − ln

√
πg(T )T

2n
.

In the Fermi gas,
d

ζ
g(ζ)D(ζ) = (r + 3/2)

g(ζ)D(ζ)

ζ
.

Thus according to the definition,

α = −k
e

(r + 3/2)
π2

3

kT

ζ
.

Problem 6.5. Using the Wiedemann-Franz law compare the coefficients κ and β for a
typical metal.
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Solution. We have the relation κ = β − Tηα. The ratio Tηα/β (according to the
Wiedamann-Franz law) has the order

Tη2e2

σTσk2
B

≈
(
kBT

εF

)2

.

Problem 6.6. Derive the expression (6.26) for the screened Coulomb potential.

ϕ =
Ze

r
e−r/rs ,

Solution. In a spherical symmetric system it is natural to chose spherical co-ordinates,
the Laplace operator for the angle-independent case being

∇2ϕ =
1

r2

d

dr

(
r2dϕ

dr

)
.

If we search the solution as u(r)/r the equation for u has the form

1
r2

d
dr

[
r2 d

dr

(
u
r

)]
= 1

r2
d
dr
r2
[
u′

r
− u

r2

]
=

= 1
r2

d
dr

(ru′ − u) = u′′

r
.

Substituting this expression to the Poisson equation we get

u′′ − 1

r2
s

u = 0→ u ∝ exp

(
− r

rs

)
.

Problem 6.7. Derive the expression (6.27).

W (θ) = 4πniv

[
e2/ε

2ε(1− cos θ) + ~2/2mr2
s

]2

Solution. One should calculate the matrix element

v ∝M =

∫
d3r eiqr

e−r/rs

r

where q = k′ − k. We have

M = 2π
∫∞

0
rdr

∫ 1

−1
d(cos β) exp (iqr cos β) · exp

(
− r
rs

)
=

= 4π
∫∞

0
dr sin(qr)

q
exp

(
− r
rs

)
= 4π

q
Im
∫∞

0
dr exp(iq − 1

rs
)r = 2π

q2+r−2
s
.

Using the property k = k′ and the equality

q2 = 2k2(1− cos θ) = 2ε(2m/~2)(1− cos θ)
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we get the result.

Problem 6.10. Derive the expression for the solution of the Boltzmann equation

G = eτtr
∂f0

∂ε

E + (µ/c)2(HE)H + (µ/c)[EH]

1 + µ2H2/c2
.

Use this expression to find the conductivity tensor.
Solution Use the relatuion (6.51), determine the coefficients α, β and γ and then sub-

sttitute them into initial expression for G. The calculation of the conductivity tensor is
straightforward.

Problem 6.12. Using the expression (6.71) find imaginary part of 1/ε(q, ω) which is
responsible for damping of the wave of electrical polarization.

Solution We have

Im
1

ε(q, ω)
= − 1

ε0

ω/τM
(q2D + 1/τM)2 + ω2

= − 1

ε0

ωτM
(1 + q2/κ2)2 + ω2τ 2

M

.

Chapter 7

Problem 7.1. Derive the equation (7.3).

δ =
1

Im q
=

2√
3

(
c2`

4πσω0b

)1/3

.

Solution. Start from the equation q2 = 4πiωσ/c2 and substitute σ = iaσ0/ql. We get

q3 = −4πaωσ0/c
2` =

(
4πaωσ0/c

2`
)
eiπ.

The following way is straightforward.

Problem 7.2. Derive the dispersion law for plasmons.
Solution. We have

1

−iω(1− qv/ω)
= −i 1

ω

[
1 +

qv

ω
+
(qv

ω

)2

+ . . .

]
The longitudinal conductivity contains

v2
z

[
1 +

qzvz
ω

+
(qzvz
ω

)2

+ . . .

]
= v2 cos2 θ +

q2v4

ω2
cos4 θ =

1

3
v2

(
1 +

3

5

q2v2

ω2

)
.

Consequently, the dispersion equation for the Fermi gas has the form

1−
ω2
p

ω2

(
1 +

3

5

q2v2
F

ω2
p

)
= 0→ ω2 = ω2

p

(
1 +

3

5

q2v2
F

ω2
p

)
= ω2

p

(
1 +

9

5
(qrTF )2

)
.
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Thus, we come to the dispersion equation

1−
ω2
p

ω2

(1 + (9/5)(qrTF )2)

1− (ω2
p/ω

2)(qrTF )2
= 0.

or
ω ≈ ωp(1 + 7q2r2

TF/5) .

Problem 7.3. Derive the dispersion relation for electromagnetic waves in metals.

det

[
q2δik − qiqk −

4πiω

c2
σik

]
= 0.

Solution. We start from the Maxwell equations

curl H =
4π

c
j, curl E = −1

c

∂H

∂t

and take the curl of the second one with the identity

curl curl E = grad div E−∇2E.

After the substitution ji =
∑

k σikEk we come to the result.

Chapter 8

Problem 8.1. Compare electrical and mechanical energies carried by the wave in a piezi-
dielectric.

Solution. The density of electrical energy in the insulating sample is

Qe =
〈ED〉

4π
=
ε0q

2|φ|2

8π
=

1

2

4π|βi,klqiqluk|2
ε0q2

.

The mechanical energy can be estimated as

Qm = 2ρ
ω2〈u2

i 〉
2

=
1/2

ρ
w2q2|ui|2 .

Thus
Qe

Qm

= χ =
4π|βi,klqiqkul|2

ε0ρw2q4|ui|2
.

Problem 8.2 . Find the relation between the amplitudes of electric files and deformation
for the case of acoustic wave in a piezoelectric semiconductor. Compare electrical and
mechanical energies carried by the wave.
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Solution. Taking into account the Poisson equation

div D = 4πe(δn)

together with the expression (8.7) for the electrical induction D and expression (8.10)
yields

φ = i
4πβi,klqiukl
q2ε(q, ω)

= i
4πβi,klqiukl

q2ε0

−iω + q2D

−iω + q2D + 1/τm
. (22.8)

Problem 8.3 Find dc current induced by a acoustic wave in a non-degenerate piezoelectric
semiconductor.

Hint: A dc current appears in the second approximation in the wave amplitude. Thus

jdc = 〈σE − eD(∂ δn/∂x〉time)

≈ 〈(δσ)E〉
=

σ

n
〈(δn)E〉 .

Solution. Using the hint we write

jdc =
σ

2en
Re[(δn)ωE

∗
ω]

= − qσ

2en
Im[(δn)ωφ

∗
ω] .

Then, we have from (8.10)

(δn)ω = − σ

e(−iω +Dq2)
q2φω .

As a result,

jdc =
σ

en

(
ε0|φω|2q2

4π

)
q

ω/τm
ω2 + (q2D)2

.

Now we can express the actual potential φω through the bare one, φ0
ω, as

φω = φ0
ω/ε(q, ω) .

As a result,

jdc =
σ

enw

(
|φ0
ω|2q2

4πε0

)
q

ωτm
(1 + q2/κ2)2 + ω2τ 2

m

.

Here w is the sound velocity The coefficient(
wε0|φω|2q2

4π

)
has the meaning of the flux of electric energy due to the wave which is connected to the
flux in mechanical energy, S as χS. The the product

χq
ωτm

(1 + q2/κ2)2 + ω2τ 2
m
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is nothing else than the absorption coefficient Γ. Finally we obtain

jdc =
σΓS

s
.

Chapter 9

Problem 9.1. Calculate dipole matrix element for the transitions between adjacent sub-
bands in a rectangular quantum well with infinite potential barriers. Assume that light is
polarized perpendicular to the well.

Solution Normalized wave functions are

gn(z) =

√
2

W

{
cos(πnz/W ), n odd
sin(πnz/W ), n even

Thus, for odd n

〈n|pz|n+ s〉 = 〈n+ s|pz|n〉

= −i2~
W

∫ W/2

−W/2
dz cos(πnz/W )(∂/∂z) sin[π(n+ s)z/W ]

=
2~
iW

[2 sin(πsn/2) + sin(πs2/2) + sin(πns+ πs2/2)](n+ s)

s(2n+ s)
.

For s = 1 the matrix element is

−4i~
W

n(n+ 1)

2n+ 1
.

Problem 4.2. Make a similar calculation for a parabolic confinement

U(z) = (1/2)mω2z2 .

Define ω from the request that the typical spread of the ground state wave function is W
and compare the result with the case of rectangular confinement.

Solution. The solution is similar. The typical confinement length is related to the
frequency ω as

W =
√

~/mω → ω = ~2/mW 2 .

From textbooks in quantum mechanics,

〈n|pz|n+ s〉 = i
~

W
√

2
[
√
nδs,−1 −

√
n+ 1δs,1] .

Chapter 16

Problem 16.1. Derive Eq. (16.3).
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Solution. For A ‖ z∫ (
A(r′)R

)
R

R4
e−R/ζ0 dV ′ → A

∫
R2dR d(cos θ) dϕ

(zR)R

R4
e−R/ζ0 =

= A

∫
R2dR d(cos θ) dϕ

cos2 θ

R2
e−R/ζ0 =

4π

3ζ0

Chapter 17

Problem 17.1. Prove that the areas under magnetiation curves are the same for type I
and type II SC with the same Hc.

Solution. Introducing G-potential as

Gs = Fs(B)− BH

4π

we note that is should be minimal in an equilibrium state with fixed H :(
∂Gs

∂B

)
H

= 0.

For a normal state

Gn = Fn +
B2

8π
− BH

4π
.

From the stability condition for the normal state
(
∂Gn
∂B

)
H

= 0 we get B = H and

Gn = Fn −
H2

8π
.

Now let us change H by δH. We get

∂

∂H
(Gn −Gs) =

B −H
4π

= M.

Now we can integrate this relation over H from 0 to Hc2 (where Gn = Gs−equilibrium!).
At the same time, at H = 0 Gi = Fi and (Fn − Fs)B=0 = H2

c /8π. We get∫ Hc2

0

M dH = −H
2
c

8π
.

Consequently, it depends only on Hc.

Problem 17.2. Derive Eq. (17.15).
Solution.

∂p

∂x
= B

∂2G

∂B2

∂B

∂x
=

B

4π

∂H(B)

∂B

∂B

∂x
=

B

4π

∂H(B)

∂x.
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Chapter 18

Problem 18.1. Prove the Eqs. (18.9) and (18.10).
Solution. For Eq. (18.8)

E =E − εFN =
∑
k

ξk
[
(nk↑ + nk↓) + 2v2

k(1− nk↑ − nk↓)
]
− ∆2

λ

with
∆ = λ

∑
k

ukvk(1− nk↑ − nk↓).

We get
δE
δvk

= 4vkξk(1− nk↑ − nk↓)− 2
∆

λ

δ∆

δvk
=

= 4vkξk(1− nk↑ − nk↓)− 2
∆

λ
λ(uk + vk

duk
dvk

)(1− nk↑ − nk↓) =

= 4vkξk(1− nk↑ − nk↓)− 2
∆

uk
(1− 2v2

k)(1− nk↑ − nk↓) = 0.

This is just the result we need.

Problem 18.2. Prove Eq. (18.18).
Solution. We have

Hint = −λ
∑

a†k′1↑
a†k′2↓

ak2↓ak1↑ = −λ
∑(

uk′1α
†
k′1↑

+ vk′1α−k′1↓

)(
uk′2α

†
k′2↓
− vk′2α−k′2↑

)
×

×
(
uk2αk2↓ − vk2α

†
−k2↑

)(
uk1αk1↑ + vk1α

†
−k1↓

)
.

We get(
uk′1uk′2α

†
k′1↑
α†k′2↓

− vk′1vk′2α−k′1↓α−k′2↑ + vk′1uk′2α−k′1↓α
†
k′2↓
− uk′1vk′2α

†
k′1↑
α−k′2↑

)
×

×
(
uk2uk1αk2↓αk1↑ − vk2vk1α

†
−k2↑α

†
−k1↓ + uk2vk1αk2↓α

†
−k1↓ − vk2uk1α

†
−k2↑αk1↑

)
Now we should remember that k′1 6= k1. onsequently only the following combinations lead
to non-zero averages(

vk′1uk′2α−k′1↓α
†
k′2↓
− uk′1vk′2α

†
k′1↑
α−k′2↑

)(
uk2vk1αk2↓α

†
−k1↓ − vk2uk1α

†
−k2↑αk1↑

)
→

→ vk′1uk′2uk2vk1

〈
α−k′1↓α

†
k′2↓
αk2↓α

†
−k1↓

〉
− uk′1vk′2uk2vk1

〈
α†k′1↑

α−k′2↑αk2↓α
†
−k1↓

〉
−

−vk2uk1vk′1uk′2

〈
α−k′1↓α

†
k′2↓
α†−k2↑αk1↑

〉
+ uk′1vk′2vk2uk1

〈
α†k′1↑

α−k′2↑α
†
−k2↑αk1↑

〉
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To get nonzero averages we put k′2 = −k′1, k1 = −k2. Consequently, we have

vk′1uk′1uk1vk1×(〈
α−k′1↓α

†
−k′1↓

α−k1↓α
†
−k1↓

〉
−
〈
α†k′1↑

αk′1↑α−k1↓α
†
−k1↓

〉
−

−
〈
α−k′1↓α

†
−k′1↓

α†k1↑αk1↑

〉
+
〈
α†k′1↑

αk′1↑α
†
k1↑αk1↑

〉)
=

= vk′1uk′1uk1vk1

[(
1− n−k′1↓

)
(1− n−k1↓)− nk′1↑(1− n−k1↓)− (1− n−k′1↓)nk1↑

+ nk′1↑nk1↑

]
Combining the formulas we come to the final result.

Problem 18.3. Check Eq. (18.20).
Solution. It is checked directly by use of Bogoliubov transform.

Chapter 20

Problem 20.1. Consider the current in a series circuit containing a Josephson junction,
load resistor R, and a battery.

Solution. The voltage is

V = U −RI = U − JcR sin θ.

According to the Josephson formula,

dθ

dt
=

2e

~
V =

2e

~
(U − JcR sin θ) = ωJ(1− λ sin θ), λ =

JcR

U
.

As a result

ωj(t− t0) =

∫
dθ

1− λ sin θ

At λ > 1 there is a pole in the integrand at θ0 = arcsin(1/λ). Thus at t→∞ θ → θ0, the
current being U/R while the voltage at the junction is zero. At λ > 1 (or J > Jc) one can
calculate the integral exactly: assuming m = tan(θ/2) we get

m = λ+
√

1− λ2 tan

[
1

2

√
1− λ2ωJ(t− t0)

]
The current being

I =
2cm

1 +m2
.

We see that the current oscillates with the period 2π/ωJ
√

1− λ2.
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Appendix A

Band structure of semiconductors

Let us start with atomic structure of few important semiconductors.

IV Semiconductors
C 1s2 2s22p2︸ ︷︷ ︸
Si 1s22s22p6 3s23p2︸ ︷︷ ︸
Ge 1s22s22p63s23p63d10 4s24p2︸ ︷︷ ︸

III-V Semiconductors

Ga 1s22s22p63s23p63d10 4s24p1︸ ︷︷ ︸
As 1s22s22p63s23p63d10 4s24p3︸ ︷︷ ︸

Important feature - outermost valence electrons are made of either s or p orbitals.
We will classify the band structure of following a simple tight-binding approximation.

Namely, we look for the wave function in the form

ψk(r) =
∑
R

eikR
∑
n

bnφ(r−R)

where φn(r) are atomic eigenfunctions. From the Schrödinger equation we have

[E(k)− Em]bm ≈
∑
n

bn

[∫
d3r φ∗m(r)φn(r)∆U(r)

+
∑
R6=0

∫
d3r φ∗m(r)φn(r)∆U(r)eikR

]
Here ∆U is the deviation of the real potential from the superposition of atomic ones. It is
not small only in the places where atomic wave functions are small. Usually, the integrals∫

d3r φ∗m(r)φn(r)∆U(r) ∝ δnm

and thus lead to a renormalization of the on-site energy.
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Single atomic s-level

In this case, bs = 1. Denoting

α(R) =

∫
d3r φ∗s(r)φs(r−R)

βs = −
∫
d3r φ∗s(r)φs(r)∆U(r)

γ(R) = −
∫
d3r φ∗m(r)φn(r−R)∆U(r)

and neglecting (for simplicity) α(R) we obtain

E(k) = Es − βs −
∑
R6=0

γ(R)eikR .

It is reasonable to keep nearest neighbors. A simple example is fcc cubic lattice, where 12
nearest neighbors are situated at

a

2
(±1,±1, 0);

a

2
(±1, 0,±1);

a

2
(0,±1,±1) .

In this case,

E(k) = Es − βs − 4γ

[
cos

kxa

2
cos

kya

2
+ cos

kya

2
cos

kza

2
+ cos

kxa

2
cos

kza

2

]
.

Let us examine important points, Fig. A.1.

• Γ⇒ (0, 0, 0), zone center,

• X ⇒ (1, 0, 0) and 5 other equivalent points,

• L⇒ (1/2, 1/2, 1/2) and 7 other equivalent points,

• L⇒ (3/4, 3/4, 0)

• L⇒ (1, 1/2, 0).

The opposite L points are connected by a reciprocal lattice vector, and real degeneracy is
only 4-fold. X-point has only 3 distinct analogs in the 1st BZ. We get the following band
structure

Along ΓX kx = 2πα/a 0 ≤ α ≤ 1
ky = kx = 0
E(k) = Es − βs − 4γ(1 + 2 cosπa)

Along ΓL kx = ky = kz = 2πα/a 0 ≤ α ≤ 1/2
E(k) = Es − βs − 12γ cos2 πa)

Along ΓK kx = ky = 2πα/a 0 ≤ α ≤ 3/4
kz = 0
E(k) = Es − βs − 4γ(cos2 πa+ 2 cosπa)

Near the Γ point,
E(k) = Es − βs − 12γ + γ2k2a2 .
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Figure A.1: Brillouin zone of fcc lattice.

The case of s and p orbitals

In this case, we have 4 wave functions,s and pi, i = x, y, z. Moreover, there are 2 atoms
per unit cell, j = 1, 2,

ψ(k, r) =
∑
Ri

4∑
m=1

∑
j=12

Cmj(k)φmj(r− rj −Ri)

where Ri stand for unit cells.
The coefficients are determined from the Schrödinger equation,

〈φm′j′|H − E|ψ(k)〉 = 0 .

This is impossible to do in general, and there are many approximate methods. One of
the simplest is sp2 nearest neighbor expansion, which ignores spin degrees of freedom. We
shall not go along this way leaving this for special courses.

Spin-orbit coupling

It is difficult to calculate spin-orbit interaction in crystals, and it is usually done with
adjustable parameters.

Here we consider simple examples using tight-binding approximation,

H = Htb +Hso .
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The interaction Hamiltonian is usually written as

Hso = λL · S,

the total angular momentum being

J2 = (L + S)2 = L2 + S2 + 2LS .

Thus,

2〈LS〉 = 〈J2 − L2 − S2〉 = ~2[j(j + 1)− l(l + 1)− s(s+ 1)] .

Here we face a problem – all this considerations are applicable to the eigenfunctions of a
given total angular momentum. So first one must decouple electronic states into the eigen-
functions of a given angular momentum. Original p-states are in fact linear combinations
of such functions, e.g.

px =
1√
2

(−φ1,1 + φ1,−1)

py =
i√
2

(φ1,1 + φ1,−1)

pz = φ1,0

φ1,±1 = ∓
√

3

8π
sin θe±iφ

φ1,0 =

√
3

4π
cos θ .

Here φij are eigenfunctions of the operators L2 and Lz with respective quantum numbers
l = i and lz = j. Then we must add spin and decompose mixed states to get eigenfunctions
for total angular momentum. In this way one gets (see Quantum Mechanics)

Φ3/2,3/2 = − 1√
2

(px + ipy) ↑

Φ3/2,1/2 = − 1√
6

[(px + ipy) ↓ −2pz ↑]

Φ3/2,−1/2 = −
√

2√
3

[(px − ipy) ↑ +2pz ↓]

Φ3/2,−3/2 =
1√
2

(px − ipy) ↓

Φ1/2,1/2 = − 1√
3

[(px + ipy) ↓ +pz ↑]

Φ1/2,−1/2 = − 1√
3

[(px − ipy) ↑ −pz ↓]
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Then one can invert this set of equations to express |pi, s〉 through the functions Φl,m. For
references,

px ↑ =
1√
2

[
−Φ3/2,3/2 +

1√
3

Φ3/2,−1/2 −
√

2√
3

Φ1/2,−1/2

]

px ↓ =
1√
2

[
+Φ3/2,−3/2 −

1√
3

Φ3/2,1/2 −
√

2√
3

Φ1/2,1/2

]

py ↑ =
i√
2

[
Φ3/2,3/2 +

1√
3

Φ3/2,−1/2 −
√

2√
3

Φ1/2,−1/2

]

py ↓ =
i√
2

[
+Φ3/2,−3/2 +

1√
3

Φ3/2,1/2 +

√
2√
3

Φ1/2,1/2

]

pz ↑ =

√
2√
3

Φ3/2,1/2 −
√

2√
3

Φ1/2,1/2

pz ↓ =

√
2√
3

Φ3/2,−1/2 −
√

2√
3

Φ1/2,−1/2 .

Finally, we can write the spin-orbit Hamiltonian as

Hso =
λ~2

2
[j(j + 1)− l(l + 1)− s(s+ 1)] .

For p-orbitals, l = 1, s = 1/2 while j is given by the first index of Φij. One can prove that
the only non-vanishing matrix elements in p representation are

〈px ↑ |Hso|py ↑〉 = −i∆
3

〈px ↑ |Hso|pz ↓〉 =
∆

3

〈py ↑ |Hso|pz ↓〉 = −i∆
3

〈px ↓ |Hso|py ↓〉 = i
∆

3

〈px ↓ |Hso|pz ↑〉 = −∆

3

〈py ↓ |Hso|pz ↑〉 = −i∆
3
.

Here ∆ = 3λ~2/2 is the spin-orbit splitting. As a result, we arrive at the following structure
of valence band, Fig. A.2 Spin-orbit splitting is given in the table A
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E

|3/2, +3/2>

|3/2, + 1/2>

|1/2, + 1/2>

-

-

-

k

Figure A.2: The general form of the valence band including spin-orbit coupling.

Semiconductor ∆ (eV)
Si 0.044
Ge 0.29
GaAs 0.35
InAs 0.41
InSb 0.82
InP 0.14
GaP 0.094

Table A.1: Spin-orbit splitting for different semiconductors

A.1 Symmetry of the band edge states

One has to discriminate between direct gap (GaAs, InAs) and indirect gap (Si, Ge) materi-
als, Fig. A.3. In direct gap materials the conduction band minimum occurs at Γ-point and
have a spherically symmetric central cell function. So they are made of s atomic states.
As one goes apart, admixture of p-states appears. This implies important limitations for
selection rules.

In the valence band, he have

Heavy holes:

Φ3/2,3/2 = − 1√
2

(|px〉+ i|py〉) ↑

Φ3/2,−3/2 =
1√
2

(|px〉 − i|py〉) ↓
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Direct
(k = 0)

Indirect
(k = X point)

s-type s+p (longitudinal)
p (transverse)

Heavy holes
Light holes

Spin-split holes

Figure A.3: Schematic description of the nature of central cell functions.

Light holes:

Φ3/2,1/2 = − 1√
6

[(|px〉+ i|py〉) ↓ −2|pz〉 ↑]

Φ3/2,−1/2 =
1√
6

[(|px〉 − i|py〉) ↑ +2|pz〉 ↓]

Split-off hole states:

Φ1/2,1/2 = − 1√
3

[(|px〉+ i|py〉) ↓ +|pz〉 ↑]

Φ1/2,−1/2 = − 1√
3

[(|px〉 − i|py〉) ↑ +|pz〉 ↓]

A Brillouin zone for silicon is shown in Fig. A.2

A.2 Modifications in heterostructures.

An important feature is how the bands align. Three type are usually studied, Fig. A.5.
The problem of band offsets is very complicated, and several theories exist.

Quantum wells

Let us discuss the case where the well region is made of direct gap material, so conduction
band states are of s-type while valence band states are p-type. For simplicity we discuss
square-box confinement, Fig- A.6. Within the effective mass approach the Schrödinger
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equation for the electron states is (in the following we do not discriminate between m∗ and
m) [

− ~2

2m∗
∇2 + V (z)

]
ψ = Eψ .

Looking for the solution as
Ψ(r) = ei(kyy+kxx)f(z)

we have the equation for f [
− ~2

2m∗
∂2

∂z2
+ V (z)

]
ψ = Enψ .

For an infinite barrier, its solution has the form

f(z) = cos
πnz

W
, if n is even

= sin
πnz

W
, if n is odd

En =
π2~2n2

2mW 2
.

Then the total energy is

E = En +
~2k2

‖

2m
.

The situation for the valence band is much more complicated because the heavy- and
light-hole states mix away from k = 0.

A.3 Impurity states

A typical energy level diagram is shown on Fig. A.7 Shallow levels allow a universal de-
scription because the spread of wave function is large and the potential can be treated as
from the point charge,

U(r) = e2/εr .

To find impurity states one has to treat Schrödinger equation (SE) including periodic
potential + Coulomb potential of the defect.

Extremum at the center of BZ

Then for small k we have

En(k) =
~2k2

2m
.

We look for solution of the SE
(H0 + U)ψ = Eψ
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in the form
ψ =

∑
n′k′

Bn′(k
′)φn′k′(r) ,

where φn′k′(r) are Bloch states. By a usual procedure (multiplication by φ∗nk(r) and inte-
gration over r) we get the equation

[En(k) − E]Bn(k) +
∑
n′k′

Unk
n′k′Bn′(k) = 0

Unk
n′k′ =

1

V

∫
u∗nkun′k′e

i(k′−k)rU(r) dr .

Then, it is natural to assume that B(k) is nonvanishing only near the BZ center, and to
replace central cell functions u by their values at k = 0. These function rapidly oscillate
within the cell while the rest varies slowly. Then within each cell∫

cell
u∗n0un′0 dr = δnn′

because Bloch functions are orthonormal. Thus,

[En(k) − E]Bn(k) +
∑
n′

U(kk′)Bn(k′) = 0

U(kk) =
1

V

∫
ei(k−bk

′)rU(r) dr = − 4πe2

εV|k− k′|2
.

Finally we get [
~2k2

2m
− E

]
Bn(k)− 4πe2

εV
∑
k′

1

|k− k′|2
Bn(k′)

where one can integrate over k in the infinite region (because Bn(k) decays rapidly).
Coming back to the real space and introducing

F (r) =
1√
V

∑
k

Bn(k)eikr

we come to the SE for a hydrogen atom,[
− ~2

2m
∇2 − e2

εr

]
F (r) = EF (r) .

Here

Et = − 1

t2
e4m

2ε2~2
, t = 1, 2 . . .

F (r) = (πa3)−1/2 exp(−r/a), a = ~2ε/me2 .

For the total wave function one can easily obtain

ψ = un0(r)F (r) .

The results are summarized in the table.
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Material ε m/m0 E1s (th.) E1s (exp.)
(meV) (meV)

GaAs 12.5 0.066 5.67 Ge:6.1 Si: 5.8
Se: 5.9 S: 6.1
S: 5.9

InP 12.6 0.08 6.8 7.28
CdTe 10 0.1 13 13.*

Table A.2: Characteristics of the impurity centers.

Several equivalent extrema

Let us consider silicon for example. The conduction band minimum is located at kz =
0.85(2π/a) in the [100] direction, the constant energy surfaces are ellipsoids of revolution
around [100]. There must be 6 equivalent ellipsoids according to cubic symmetry. For a
given ellipsoid,

E =
~2

2m`

(kz − k0
z)

2 +
~2

2mt

(k2
x + k2

y) .

Here m` = 0.916m0, mt = 0.19m0. According to the effective mass theory, the energy levels
are N -fold degenerate, where n is the number of equivalent ellipsoids. In real situation,
these levels are split due to short-range corrections to the potential. These corrections
provide inter-extrema matrix elements. The results for an arbitrary ration γ = mt/m` can
be obtained only numerically by a variational method (Kohn and Luttinger). The trial
function was chosen in the form

F = (πa‖a
2
⊥)−1/2 exp

{
−
[
x2 + y2

a2
⊥

+
z2

a‖

]1/2
}
,

and the parameters ai were chosen to minimize the energy at given γ. Excited states are
calculated in a similar way. The energies are listed in table A.3.

Material E1s (meV) E2p0 (meV)
Si (theor.) 31.27 11.51
Si(P) 45.5 33.9 32.6 11.45
Si(As) 53.7 32.6 31.2 11.49
Si(Sb) 42.7 32.9 30.6 11.52
Ge(theor/) 9.81 4.74
Ge(P) 12.9 9.9 4.75
Ge(As) 14.17 10.0 4.75
Ge(Sb) 10.32 10.0 4.7

Table A.3: Donor ionization energies in Ge and Si. Experimental values are different
because of chemical shift
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Impurity levels near the point of degeneracy

Degeneracy means that there are t > 1 functions,

φjnk, j = 1, 2..t

which satisfy Schrödinger equation without an impurity. In this case (remember, k ≈ 0),

ψ =
t∑

j=1

Fj(r)φjn0(br) .

The functions Fj satisfy matrix equation,

t∑
j′=1

[
3∑

α,β=1

Hαβ
jj′ p̂αp̂β + U(r)δjj′

]
Fj′ = EFj . (A.1)

If we want to include spin-orbital interaction we have to add

Hso =
1

4mc
0c

2
[σ ×∇V ] · p̂ .

Here σ is the spin operator while V is periodic potential. In general H-matrix is com-
plicated. Here we use the opportunity to introduce a simplified (the so-called invariant)
method based just upon the symmetry.

For simplicity, let us start with the situation when spin-orbit interaction is very large,
and split-off mode is very far. Then we have 4-fold degenerate system. Mathematically, it
can be represented by a pseudo-spin 3/2 characterized by a pseudo-vector J.

There are only 2 invariants quadratic in p, namely p̂2 and (p̂ · J)2. Thus we have only
two independent parameters, and traditionally the Hamiltonian is written as

H =
1

m0

[
p̂2

2

(
γ1 +

5

2
γ

)
− γ(p̂ · J)2

]
. (A.2)

That would be OK for spherical symmetry, while for cubic symmetry one has one more
invariant,

∑
i p̂

2
iJ

2
i . As a result, the Hamiltonian is traditionally expressed as

H =
1

m0

[
p̂2

2

(
γ1 +

5

2
γ2

)
− γ3(p̂ · J)2 + (γ3 − γ2)

∑
i

p̂2
iJ

2
i

]
. (A.3)

This is the famous Luttinger Hamiltonian. Note that if the lattice has no inversion center
there also linear in p terms.

Now we left with 4 coupled Schrödinger equations (A.1). To check the situation, let us
first put U(r) = 0 and look for solution in the form

Fj = Aj(k/k)eikr , k ≡ |k| .
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The corresponding matrix lemenets can be obtained by substitution ~k instead of the
operator p̂ into Luttinger Hamiltonian. The Hamiltonian (A.2) does not depend on the
direction of k. Thus let us direct k along z axis and use representation with diagonal J2

z .
Thus the system is decoupled into 4 independent equation with two different eigenvalues,

E` =
γ1 + 2γ

2m0

~2k2, E` =
γ1 − 2γ

2m0

~2k2 .

If
γ1 ± 2γ > 0

both energies are positive (here the energy is counted inside the valence band) and called
the light and heavy holes. The effective masses are

m`(h) = m0/(γ1 ± γ) .

The calculations for the full Luttinger Hamiltonian (A.3) require explicit form of J-matrices.
It solutions lead to the anisotropic dispersion law

E`,h =
~2

2m0

{
γ1k

2 ± 4
[
γ2

2k
4

+12(γ2
3 − γ2

2)(k2
xk

2
y + k2

yk
2
z + k2

zk
2
x)
]1/2}

.

The parameters of Ge and Si are given in the Table A.3

Material γ1 γ2 γ3 ∆ ε
Ge 4.22 0.39 1.44 0.044 11.4
Si 13.35 4.25 5.69 0.29 15.4

Table A.4: Parameters of the Luttinger Hamiltonian for Ge and Si

The usual way to calculate acceptor states is variational calculation under the spherical
model (A.2). In this case the set of 4 differential equations can be reduced to a system of
2 differential equation containing only 1 parameter, β = m`/mh.
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Figure A.4: Constant energy ellipsoids for Si conduction band. There are 6 equivalent
valleys resulting in a very large density of states.

Type I Type II Type III

Figure A.5: Various possible band lineups in heterostructures.

E=E  +p /2m2

E=E  +p /2m2
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2
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Figure A.6: Subband levels in a quantum well.
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E
E

E
E

c

v
A

D

Figure A.7: band diagram of a semiconductor.
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Useful Relations

B.1 Trigonometry Relations(
cosx
sinx

)
=

1

2

(
eix ± e−ix

)
(B.1)(

cos2 x
sin2 x

)
=

1

2
(1± cosx) (B.2)

B.2 Application of the Poisson summation formula

The Poisson formula reads

∞∑
N=−∞

ϕ(2πN + t) =
1

2π

∞∑
l=−∞

eilt
∫ ∞
−∞

ϕ(τ)e−ilτ dτ.

In our case

ϕ(2πN + t) =
1

(2π)3/2
(2πN + t)3/2 (B.3)

if we replace N → −N and put t = 2πx − π. The other difference is that the function ϕ
is finite. So, if we introduce the maximal integer in the quantity x as [x] we get the limits
of the ϕ

from 2π

(
x− 1

2
−
[
x− 1

2

])
to t.

The lower limit we replace by 0 that is good for large x. Finally we get the for Φ(x)

Φ(x) =
1

(2π)5/2

∞∑
l=−∞

eilt
∫ t

0

τ 3/2e−ilτ dτ.

Then we take into account that for l = 0∫ t

0

τ 3/2 dτ =
2

5
t5/2,

465
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and combine the item with ±l. As a result, we get

(−1)l
{
e2πilx

∫ t
0
τ 3/2e−ilτ dτ+

+e−2πilx
∫ t

0
τ 3/2eilτ dτ

}
=

= (−1)l2
∫ t

0
τ 3/2 cos [2πl(x− τ) dτ ] .

Then we integrate by parts twice to transform τ 3/2 → τ−1/2 and changing τ → (π/2l)z2

we get

Φ(x) = 1
(2π)5/2

[
2
5
(2πx)5/2 + 3

∑∞
1

(−1)l

l5/2

{
(2πlx)1/2−

−
√

π
2

[
sin(2πlx)S

(√
4lx
)

+ cos(2πlx)C
(√

4lx
)]}] .

Here we have introduced the Fresnel integrals

S(u) =
∫ u

0
sin
(
π
2
x2
)
dx

C(u) =
∫ u

0
cos
(
π
2
x2
)
dx

.

These function oscillate with the period ≈ 1 and with dumping amplitudes; the asymptotic
behavior being 0.5 at u→∞. The non-oscillating term can be easily summed over l:

∞∑
l=1

(−1)l

l5/2
(2πlx)1/2 = (2πx)1/2

∞∑
l=1

(−1)l

l2
= −π

2

12
(2πx)1/2
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Vector and Matrix Relations

Vector A is a column Ai. Usually, two kind of vector products are defined: the scalar
product

AB = A ·B =
∑
i

AiBi

and the vector product

[AB] = [A×B] = det

∣∣∣∣∣∣
i1 i2 i3
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
where ii are the unit vectors. We have AB = BA, [A×B] = − [B×A] .

Matrix Â is a table with the elements Aik. If

Aik = Aiδik

the matrix is called the diagonal, the unit matrix 1̂ has the elements δik. We have 1̂Â =
Â1̂ = Â. 0-matrix has all the elements equal to 0; (Â+ B̂)ik = Aik +Bik.

Trace of the matrix defined as

Tr Â =
∑
i

Aii; Tr (ÂB̂) = Tr (B̂Â).

Matrix dot product is defined as

(ÂB̂)ik =
∑
l

AilBlk.

It is important that ÂB̂ 6= B̂Â. At the same time, Ĉ(B̂Â) = (ĈB̂)Â. The inverse matrix
is defined by the relation

ÂÂ−1 = Â−1Â = 1̂.

We have
(ÂB̂)−1 = B̂−1Â−1.
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468 APPENDIX C. VECTOR AND MATRIX RELATIONS

The conjugate matrix is defined as (
Â†
)
ik

= A∗ki.

If Â† = Â the matrix is called the Hermitian. The matrix is called unitary if

Â† = Â−1, or Â†Â = 1̂.

Sometimes it is useful to introduce a row A† with the elements Ai.We get A†A =
∑

iA
2
i .

Eigenvectors u and eigenvalues λ of the matrix Â are defined as solutions of matrix
equation:

Âu = λu or
∑
k

(Aik − λδik)uk = 0.

It is a set of i equations. The number of solutions is equal to the matrix’s range. They
exist only if

det (Â− λ1̂) = 0,

it is just the equation for the eigenvalues λi. If the matrix Â is Hermitian. its eigenvalues
are real
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